9,021 research outputs found

    Cost-Effective Sulphur Reduction Under Uncertainty

    Get PDF
    The problem of reducing SO2 emissions in Europe is considered. The costs of reduction are assumed to be uncertain and are modeled by a set of possible scenarios. A mean-variance model of the problem is formulated and a specialized computational procedure is developed. The approach is applied to the transboundary air pollution model with real-world data

    Backpropagation training in adaptive quantum networks

    Full text link
    We introduce a robust, error-tolerant adaptive training algorithm for generalized learning paradigms in high-dimensional superposed quantum networks, or \emph{adaptive quantum networks}. The formalized procedure applies standard backpropagation training across a coherent ensemble of discrete topological configurations of individual neural networks, each of which is formally merged into appropriate linear superposition within a predefined, decoherence-free subspace. Quantum parallelism facilitates simultaneous training and revision of the system within this coherent state space, resulting in accelerated convergence to a stable network attractor under consequent iteration of the implemented backpropagation algorithm. Parallel evolution of linear superposed networks incorporating backpropagation training provides quantitative, numerical indications for optimization of both single-neuron activation functions and optimal reconfiguration of whole-network quantum structure.Comment: Talk presented at "Quantum Structures - 2008", Gdansk, Polan

    Reporting of prognostic studies of tumour markers: a review of published articles in relation to REMARK guidelines

    Get PDF
    Background: Poor reporting compromises the reliability and clinical value of prognostic tumour marker studies. We review articles to assess the reporting of patients and events using REMARK guidelines, at the time of guideline publication. Methods: We sampled 50 prognostic tumour marker studies from higher impact cancer journals between 2006 and 2007. The inclusion criteria were cancer; focus on single biological tumour marker; survival analysis; multivariable analysis; and not gene array or proteomic data. Articles were assessed for the REMARK profile and other REMARK guideline items. We propose a reporting aid, the REMARK profile, motivated by the CONSORT flowchart. Results: In 50 studies assessed for the REMARK profile, the number of eligible patients (56% of articles), excluded patients (54%) and patients in analyses (98%) was reported. Only 50% of articles reported the number of outcome events. In multivariable analyses, 54% and 30% of articles reported patient and event numbers for all variables. Of the studies, 66% used archival samples, indicating a potentially biased patient selection. Only 36% of studies reported clearly defined outcomes. Conclusions: Good reporting is critical for the interpretability and clinical applicability of prognostic studies. Current reporting of key information, such as the number of outcome events in all patients and subgroups, is poor. Use of the REMARK profile would greatly improve reporting and enhance prognostic research

    Hanbury Brown-Twiss Interferometry for Fractional and Integer Mott Phases

    Full text link
    Hanbury-Brown-Twiss interferometry (HBTI) is used to study integer and fractionally filled Mott Insulator (MI) phases in period-2 optical superlattices. In contrast to the quasimomentum distribution, this second order interferometry pattern exhibits high contrast fringes in the it insulating phases. Our detailed study of HBTI suggests that this interference pattern signals the various superfluid-insulator transitions and therefore can be used as a practical method to determine the phase diagram of the system. We find that in the presence of a confining potential the insulating phases become robust as they exist for a finite range of atom numbers. Furthermore, we show that in the trapped case the HBTI interferogram signals the formation of the MI domains and probes the shell structure of the system.Comment: 13 pages, 15 figure

    Dynamical properties of ultracold bosons in an optical lattice

    Full text link
    We study the excitation spectrum of strongly correlated lattice bosons for the Mott-insulating phase and for the superfluid phase close to localization. Within a Schwinger-boson mean-field approach we find two gapped modes in the Mott insulator and the combination of a sound mode (Goldstone) and a gapped (Higgs) mode in the superfluid. To make our findings comparable with experimental results, we calculate the dynamic structure factor as well as the linear response to the optical lattice modulation introduced by Stoeferle et al. [Phys. Rev. Lett. 92, 130403 (2004)]. We find that the puzzling finite frequency absorption observed in the superfluid phase could be explained via the excitation of the gapped (Higgs) mode. We check the consistency of our results with an adapted f-sum-rule and propose an extension of the experimental technique by Stoeferle et al. to further verify our findings.Comment: 13 pages, 5 figure
    • …
    corecore