45,896 research outputs found
Extraction Methods and an Investigation of Drosophila Lipids
In earlier work (8) we extracted lipids from dried, macerated Drosophila melanogaster with ether, but later, working with larger quantities of undried flies, we found that most of the phospholipids were autolyzed. Kates' studies (2) led him to suggest n-propanol or isopropanol for lipid extraction (isopropanol was his later choice (6, 7)). Attempting to meet the requirements discussed above, we developed a new and relatively simple method of extraction employing n-propanol (9), or chloroformmethanol (2:1). The latter proved to be a more useful solvent. The method will be described in detail below, with results of an examination of Drosophila lipids
OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy
[EN] Previous works demonstrated that the use of Oxymethylene ether (OMEx) in advanced combustion modes, as the dual-mode dual-fuel combustion, leads to a notable reduction of the lifecycle CO2 emissions while promoting lower NOx and soot emissions than those from conventional diesel combustion. Nonetheless, the low heating value of OMEx results in a fuel consumption increase. A possible solution to avoid this drawback is by blending OMEx with diesel fuel. This will help to introduce the OMEx in the market with minimum changes in the infrastructure. In this context, this work evaluates the impact of using OMEx-diesel blends in different mass percentages (50% and 70% of OMEx in diesel), compared to the reference net fuels (net diesel and OMEx) in a multi-cylinder compression ignition engine operating under dual-mode dual-fuel combustion at different engine loads (25%, 50%, 80% and 100%) and 1800 rpm. At each condition, an air mass sweep was performed to assess the limiting operating conditions with each fuel due to either excessive pressure gradients and soot production, or low combustion efficiency. The results suggested that the OMEx-diesel blends allow to reduce the soot emissions compared to net diesel for all the conditions tested. In addition, blends having an OMEx mass content greater than 70% allowed to fulfill the EUVI limits for NOx with ultra-low soot levels (.Soler A. Role of e-fuels in the European transport system. Literature review. Concawe, Brussels, January 2020.Benajes, J., GarcĂa, A., Monsalve-Serrano, J., & MartĂnez-Boggio, S. (2019). Optimization of the parallel and mild hybrid vehicle platforms operating under conventional and advanced combustion modes. Energy Conversion and Management, 190, 73-90. doi:10.1016/j.enconman.2019.04.010LujĂĄn, J. M., GarcĂa, A., Monsalve-Serrano, J., & MartĂnez-Boggio, S. (2019). Effectiveness of hybrid powertrains to reduce the fuel consumption and NOx emissions of a Euro 6d-temp diesel engine under real-life driving conditions. Energy Conversion and Management, 199, 111987. doi:10.1016/j.enconman.2019.111987Pastor, J. V., GarcĂa, A., MicĂł, C., & Lewiski, F. (2020). An optical investigation of Fischer-Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy, 260, 114238. doi:10.1016/j.apenergy.2019.114238Ershov, M., Potanin, D., Gueseva, A., Abdellatief, T. M. M., & Kapustin, V. (2020). Novel strategy to develop the technology of high-octane alternative fuel based on low-octane gasoline Fischer-Tropsch process. Fuel, 261, 116330. doi:10.1016/j.fuel.2019.116330Verhelst, S., Turner, J. W., Sileghem, L., & Vancoillie, J. (2019). Methanol as a fuel for internal combustion engines. Progress in Energy and Combustion Science, 70, 43-88. doi:10.1016/j.pecs.2018.10.001Deutz, S., Bongartz, D., Heuser, B., KĂ€telhön, A., Schulze Langenhorst, L., Omari, A., ⊠Bardow, A. (2018). Cleaner production of cleaner fuels: wind-to-wheel â environmental assessment of CO2-based oxymethylene ether as a drop-in fuel. Energy & Environmental Science, 11(2), 331-343. doi:10.1039/c7ee01657cOmari A, Heuser B, Pischinger S. Potential of oxymethylenether-diesel blends for ultra-low emission engines, Fuel, 209, 2017, 232â237, ISSN 0016-2361, doi: 10.1016/j.fuel.2017.07.107.Burre, J., Bongartz, D., & Mitsos, A. (2019). Production of Oxymethylene Dimethyl Ethers from Hydrogen and Carbon DioxideâPart II: Modeling and Analysis for OME3â5. Industrial & Engineering Chemistry Research, 58(14), 5567-5578. doi:10.1021/acs.iecr.8b05577Burre J, Bongartz D, Mitsos A. Production of oxymethylene dimethyl ethers from hydrogen and carbon dioxideâPart II: Modeling and analysis for OME3â5, Ind Eng Chem Res, March 2019, 58, 5567â5578, doi: 10.1021/acs.iecr.8b05577.GarcĂa, A., Monsalve-Serrano, J., Villalta, D., Lago Sari, R., Gordillo Zavaleta, V., & Gaillard, P. (2019). Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept. Applied Energy, 253, 113622. doi:10.1016/j.apenergy.2019.113622Payri, R., De La Morena, J., Monsalve-Serrano, J., Pesce, F. C., & Vassallo, A. (2018). Impact of counter-bore nozzle on the combustion process and exhaust emissions for light-duty diesel engine application. International Journal of Engine Research, 20(1), 46-57. doi:10.1177/1468087418819250Di Sarli, V., Landi, G., Lisi, L., Saliva, A., & Di Benedetto, A. (2016). Catalytic diesel particulate filters with highly dispersed ceria: Effect of the soot-catalyst contact on the regeneration performance. Applied Catalysis B: Environmental, 197, 116-124. doi:10.1016/j.apcatb.2016.01.073Orihuela, M. P., GĂłmez-MartĂn, A., Miceli, P., Becerra, J. A., Chacartegui, R., & Fino, D. (2018). Experimental measurement of the filtration efficiency and pressure drop of wall-flow diesel particulate filters (DPF) made of biomorphic Silicon Carbide using laboratory generated particles. Applied Thermal Engineering, 131, 41-53. doi:10.1016/j.applthermaleng.2017.11.149Pachiannan T, Zhong W, Rajkumar S, He Z, Leng X, Wang Q. A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. Appl Energy, 251,2019,113380.Martins M, Fischer I, Gusberti F, Sari R et al., HCCI of wet ethanol on a dedicated cylinder of a diesel engine, SAE Technical Paper 2017-01-0733, 2017, doi: 10.4271/2017-01-0733.Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003Olmeda, P., GarcĂa, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on RCCI heat transfer in a light-duty diesel engine with different fuels: Comparison versus conventional diesel combustion. Applied Thermal Engineering, 144, 424-436. doi:10.1016/j.applthermaleng.2018.08.082Benajes, J., GarcĂa, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy, 157, 19-30. doi:10.1016/j.energy.2018.05.144Curran S, Hanson R, Wagner R. Reactivity controlled compression ignition combustion on a multi-cylinder light-duty diesel engine. Int J Engine Res 13 (3), 216â225.Kokjohn SL, Hanson RM, Splitter DA, Reitz RD. Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion, Int J Engine Res, 2011. 12, June 2011, 209â226.Benajes, J., Molina, S., GarcĂa, A., & Monsalve-Serrano, J. (2015). Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 90, 1261-1271. doi:10.1016/j.energy.2015.06.088Benajes, J., Molina, S., GarcĂa, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046Benajes, J., GarcĂa, A., Monsalve-Serrano, J., & Lago Sari, R. (2018). Experimental investigation on the efficiency of a diesel oxidation catalyst in a medium-duty multi-cylinder RCCI engine. Energy Conversion and Management, 176, 1-10. doi:10.1016/j.enconman.2018.09.016GarcĂa, A., Piqueras, P., Monsalve-Serrano, J., & Lago Sari, R. (2018). Sizing a conventional diesel oxidation catalyst to be used for RCCI combustion under real driving conditions. Applied Thermal Engineering, 140, 62-72. doi:10.1016/j.applthermaleng.2018.05.043Benajes, J., GarcĂa, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028Benajes, J., GarcĂa, A., Monsalve-Serrano, J., Balloul, I., & Pradel, G. (2017). Evaluating the reactivity controlled compression ignition operating range limits in a high-compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research, 18(1-2), 66-80. doi:10.1177/1468087416678500Molina, S., GarcĂa, A., Monsalve-Serrano, J., & Estepa, D. (2018). Miller cycle for improved efficiency, load range and emissions in a heavy-duty engine running under reactivity controlled compression ignition combustion. Applied Thermal Engineering, 136, 161-168. doi:10.1016/j.applthermaleng.2018.02.106Pedrozo V, May W, Guan W, Zhao H. High efficiency ethanol-diesel dual-fuel combustion: a comparison against conventional diesel combustion from low to full engine load. Fuel, 230, 2018, 440â451, ISSN 0016-2361, doi: 10.1016/j.fuel.2018.05.034.Benajes, J., GarcĂa, A., Monsalve-Serrano, J., & Boronat, V. (2017). Achieving clean and efficient engine operation up to full load by combining optimized RCCI and dual-fuel diesel-gasoline combustion strategies. Energy Conversion and Management, 136, 142-151. doi:10.1016/j.enconman.2017.01.010GarcĂa, A., Monsalve-Serrano, J., RĂŒckert Roso, V., & Santos Martins, M. E. (2017). Evaluating the emissions and performance of two dual-mode RCCI combustion strategies under the World Harmonized Vehicle Cycle (WHVC). Energy Conversion and Management, 149, 263-274. doi:10.1016/j.enconman.2017.07.034Benajes, J., GarcĂa, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014LujĂĄn, J. M., Dolz, V., Monsalve-Serrano, J., & Bernal Maldonado, M. A. (2019). High-pressure exhaust gas recirculation line condensation model of an internal combustion diesel engine operating at cold conditions. International Journal of Engine Research, 22(2), 407-416. doi:10.1177/1468087419868026AVL manufacturer manual. Smoke value measurement with the filter-papermethod. Application notes. June 2005 AT1007E, Rev. 02. Web:.Payri R, Gimeno J, Mata C, Viera A. Rate of injection measurements of a direct-acting piezoelectric injector for different operating temperatures. Energy Convers Manage, 154, 2017, 387-393, ISSN 0196-8904, doi: 10.1016/j.enconman.2017.11.029.Pedrozo, V. B., May, I., & Zhao, H. (2017). Exploring the mid-load potential of ethanol-diesel dual-fuel combustion with and without EGR. Applied Energy, 193, 263-275. doi:10.1016/j.apenergy.2017.02.04
Thermoset-thermoplastic aromatic polyamide containing N-propargyl groups
The compounds of the class of aromatic polyamides useful as matrix resins in the manufacture of composites or laminate fabrication were developed. The process for preparing this thermoplastic-thermoset polyamide system involves incorporating a latent crosslinking moiety along the backbone of the polyamide to improve the temperature range of fabrication thereof wherein the resin softens at a relatively low temperature (approx. 154 C) and subsequently sets-up or undergoes crosslinking when subjected to higher temperature (approx. 280 C)
Sexual hormones in Achyla. V. Properties of hormone A of Achyla bisexualis
1. The hormonal coordinating mechanism of the sexual process in Achlya is briefly reviewed.
2. A technique is described for culturing the female plant of Achlya bisexualis in sufficient quantity to furnish material for the chemical study of hormone A.
3. A modification of the biological assay for hormone A is described.
4. Many of the properties of hormone A have been determined: (a) solubilities in common organic solvents, (b) adsorption, (c) stability, (d) inactivation, and (e) reactions with certain reagents.
5. A procedure is described whereby enormous enrichment of the active principle has been achieved
Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage
This paper reports a bottom-up solution-phase process for the preparation of pristine and heteroatom (boron, phosphorus, or nitrogen)-substituted carbon scaffolds that show good surface areas and enhanced hydrogen adsorption capacities and binding energies. The synthesis method involves heating chlorine-containing small organic molecules with metallic sodium at reflux in high-boiling solvents. For heteroatom incorporation, heteroatomic electrophiles are added to the reaction mixture. Under the reaction conditions, micrometer-sized graphitic sheets assembled by 3â5 nm-sized domains of graphene nanoflakes are formed, and when they are heteroatom-substituted, the heteroatoms are uniformly distributed. The substituted carbon scaffolds enriched with heteroatoms (boron ~7.3%, phosphorus ~8.1%, and nitrogen ~28.1%) had surface areas as high as 900 m^2 g^(â1) and enhanced reversible hydrogen physisorption capacities relative to pristine carbon scaffolds or common carbonaceous materials. In addition, the binding energies of the substituted carbon scaffolds, as measured by adsorption isotherms, were 8.6, 8.3, and 5.6 kJ mol^(â1) for the boron-, phosphorus-, and nitrogen-enriched carbon scaffolds, respectively
Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol
[EN] A series of W-V-O catalysts with different m-WO3 and h-WO3 phase contents were hydrothermally synthesized by employing different tungsten, vanadium, and ammonium precursors and characterized by powder XRD, N-2 adsorption, SEM, X-ray energy-dispersive spectroscopy, thermogravimetric analysis, Raman and FTIR spectroscopy, NH3 temperature programmed desorption, H-2 temperature-programmed reduction, and XPS. Finally, the acid/redox properties were analyzed by using aerobic transformation of methanol as a characterization reaction. A correlation between phase composition as well as acid and redox properties was observed, which were correlated to the catalytic performance of the title materials in a one-pot oxydehydration reaction of glycerol. The hexagonal tungsten bronze (h-WO3) phase shows a significantly higher concentration of acid sites than monoclinic m-WO3, so that the acid properties of W-V-O oxides are directly related to the presence of h-WO3 crystals. The presence of a higher concentration of acid sites in V-containing h-WO3 crystals is a key factor to achieve high selectivity to both acrolein and acrylic acid during one-pot glycerol oxydehydration. Also, V sites in h-WO3 show higher selectivity in the consecutive reaction (partial oxidation of acrolein to acrylic acid), while V sites in the m-WO3 phase fundamentally lead to the formation of carbon oxides.The authors acknowledge the DGICYT in Spain, CTQ2015-68951-C3-1-R and CTQ2015-68951-C3-3-R. Authors from ITQ also thank Project SEV-2016-0683 for financial support. D. D. thanks MINECO and Severo Ochoa Excellence Program for his fellowship (SVP-2014-068669). The research group of Prof. Fabrizio Cavani (University of Bologna, Italy)and Consorzio INSTM (Firenze) are gratefully acknowledged for a PhD grant to A. C. Authors also thank the Electron Microscopy Service of Universitat Politecnica de Valencia for their support.Delgado-Muñoz, D.; Chieregato, A.; Soriano RodrĂguez, MD.; RodrĂguez-Aguado, E.; Ruiz-RodrĂguez, L.; Rodriguez-Castellon, E.; LĂłpez Nieto, JM. (2018). Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol. European Journal of Inorganic Chemistry. 10:1204-1211. https://doi.org/10.1002/ejic.201800059S1204121110GUO, J.-D., & WHITTINGHAM, M. S. (1993). TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY. International Journal of Modern Physics B, 07(23n24), 4145-4164. doi:10.1142/s0217979293003607Long, H., Zeng, W., & Zhang, H. (2015). Synthesis of WO3 and its gas sensing: a review. Journal of Materials Science: Materials in Electronics, 26(7), 4698-4707. doi:10.1007/s10854-015-2896-4Haldolaarachchige, N., Gibson, Q., Krizan, J., & Cava, R. J. (2014). Superconducting properties of theKxWO3tetragonal tungsten bronze and the superconducting phase diagram of the tungsten bronze family. Physical Review B, 89(10). doi:10.1103/physrevb.89.104520Huang, Z.-F., Song, J., Pan, L., Zhang, X., Wang, L., & Zou, J.-J. (2015). Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Advanced Materials, 27(36), 5309-5327. doi:10.1002/adma.201501217Maiyalagan, T., & Viswanathan, B. (2008). Catalytic activity of platinum/tungsten oxide nanorod electrodes towards electro-oxidation of methanol. Journal of Power Sources, 175(2), 789-793. doi:10.1016/j.jpowsour.2007.09.106Weber, M. F., Bevolo, A. J., Shanks, H. R., & Danielson, G. C. (1981). Electrocatalytic Activity of Cubic Sodium Tungsten Bronze: I. Effects of Platinum Doping, Anodization, and Platinum PreâElectrolysis of the Electrolyte. Journal of The Electrochemical Society, 128(5), 996-1003. doi:10.1149/1.2127588Wickman, B., Wesselmark, M., Lagergren, C., & Lindbergh, G. (2011). Tungsten oxide in polymer electrolyte fuel cell electrodesâA thin-film model electrode study. Electrochimica Acta, 56(25), 9496-9503. doi:10.1016/j.electacta.2011.08.046Dey, K. R., Debnath, T., RĂŒscher, C. H., Sundberg, M., & Hussain, A. (2010). Synthesis and characterization of niobium doped hexagonal tungsten bronze in the systems, CsxNbyW1âyO3. Journal of Materials Science, 46(5), 1388-1395. doi:10.1007/s10853-010-4932-3Zhang, Z., Liu, J., Gu, J., Su, L., & Cheng, L. (2014). An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci., 7(8), 2535-2558. doi:10.1039/c3ee43886dMurawska, M., Cox, J. A., & Miecznikowski, K. (2014). PtIrâWO3 nanostructured alloy for electrocatalytic oxidation of ethylene glycol and ethanol. Journal of Solid State Electrochemistry, 18(11), 3003-3010. doi:10.1007/s10008-014-2493-0Li, X. P., Xiang, X. D., Yang, H. Y., Wang, X. J., Tan, C. L., & Li, W. S. (2013). Hydrogen Tungsten Bronze-Supported Platinum as Electrocatalyst for Methanol Oxidation. Fuel Cells, 13(2), 314-318. doi:10.1002/fuce.201000131Kulesza, P. J., Pieta, I. S., Rutkowska, I. A., Wadas, A., Marks, D., Klak, K., ⊠Cox, J. A. (2013). Electrocatalytic oxidation of small organic molecules in acid medium: Enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides. Electrochimica Acta, 110, 474-483. doi:10.1016/j.electacta.2013.06.052BROYDE, B. (1968). Tungsten bronze fuel cell catalysts. Journal of Catalysis, 10(1), 13-18. doi:10.1016/0021-9517(68)90217-0Li, G., Guo, C., Yan, M., & Liu, S. (2016). Cs x WO 3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Applied Catalysis B: Environmental, 183, 142-148. doi:10.1016/j.apcatb.2015.10.039Xi, Y., Chen, Z., Gan Wei Kiat, V., Huang, L., & Cheng, H. (2015). On the mechanism of catalytic hydrogenation of thiophene on hydrogen tungsten bronze. Physical Chemistry Chemical Physics, 17(15), 9698-9705. doi:10.1039/c4cp05298fLiu, Y., Shrestha, S., & Mustain, W. E. (2012). Synthesis of Nanosize Tungsten Oxide and Its Evaluation as an Electrocatalyst Support for Oxygen Reduction in Acid Media. ACS Catalysis, 2(3), 456-463. doi:10.1021/cs200657wSong, J., Huang, Z.-F., Pan, L., Zou, J.-J., Zhang, X., & Wang, L. (2015). Oxygen-Deficient Tungsten Oxide as Versatile and Efficient Hydrogenation Catalyst. ACS Catalysis, 5(11), 6594-6599. doi:10.1021/acscatal.5b01522Okumura, K., Ishida, S., Takahata, R., & Katada, N. (2013). Structure and catalysis of layered NbâW oxide constructed by the self-assembly of nanofibers. Catalysis Today, 204, 197-203. doi:10.1016/j.cattod.2012.06.034Yue, C., Zhu, X., Rigutto, M., & Hensen, E. (2015). Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Applied Catalysis B: Environmental, 163, 370-381. doi:10.1016/j.apcatb.2014.08.008Botella, P., Solsona, B., GarcĂa-GonzĂĄlez, E., GonzĂĄlez-Calbet, J. M., & LĂłpez Nieto, J. M. (2007). The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons. Chemical Communications, (47), 5040. doi:10.1039/b711228aSoriano, M. D., ConcepciĂłn, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622eChieregato, A., Soriano, M. D., GarcĂa-GonzĂĄlez, E., Puglia, G., Basile, F., ConcepciĂłn, P., ⊠Cavani, F. (2014). Multielement Crystalline and Pseudocrystalline Oxides as Efficient Catalysts for the Direct Transformation of Glycerol into Acrylic Acid. ChemSusChem, 8(2), 398-406. doi:10.1002/cssc.201402721Soriano, M. D., Chieregato, A., Zamora, S., Basile, F., Cavani, F., & LĂłpez Nieto, J. M. (2015). Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols: Glycerol and Methanol. Topics in Catalysis, 59(2-4), 178-185. doi:10.1007/s11244-015-0440-7Nagy, D., Nagy, D., SzilĂĄgyi, I. M., & Fan, X. (2016). Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. RSC Advances, 6(40), 33743-33754. doi:10.1039/c5ra26582gLin, S., Guo, Y., Li, X., & Liu, Y. (2015). Glycine acid-assisted green hydrothermal synthesis and controlled growth of WO3 nanowires. Materials Letters, 152, 102-104. doi:10.1016/j.matlet.2015.03.099Miao, B., Zeng, W., Hussain, S., Mei, Q., Xu, S., Zhang, H., ⊠Li, T. (2015). Large scale hydrothermal synthesis of monodisperse hexagonal WO3 nanowire and the growth mechanism. Materials Letters, 147, 12-15. doi:10.1016/j.matlet.2015.02.020Marques, A. C., Santos, L., Costa, M. N., Dantas, J. M., Duarte, P., Gonçalves, A., ⊠Fortunato, E. (2015). Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes. Scientific Reports, 5(1). doi:10.1038/srep09910MagnĂ©li, A., Virtanen, A. I., Olsen, J., Virtanen, A. I., & Sörensen, N. A. (1953). Studies on the Hexagonal Tungsten Bronzes of Potassium, Rubidium, and Cesium. Acta Chemica Scandinavica, 7, 315-324. doi:10.3891/acta.chem.scand.07-0315C. D. Vanderpool M. B. MacInnis J. C. Patton US Patent 1976Sanchezâ
Sanchez, M., Girgsdies, F., Jastak, M., Kube, P., Schlögl, R., & Trunschke, A. (2012). Aiding the Self-Assembly of Supramolecular Polyoxometalates under Hydrothermal Conditions To Give Precursors of Complex Functional Oxides. Angewandte Chemie International Edition, 51(29), 7194-7197. doi:10.1002/anie.201200746Sanchezâ
Sanchez, M., Girgsdies, F., Jastak, M., Kube, P., Schlögl, R., & Trunschke, A. (2012). Aiding the Self-Assembly of Supramolecular Polyoxometalates under Hydrothermal Conditions To Give Precursors of Complex Functional Oxides. Angewandte Chemie, 124(29), 7306-7309. doi:10.1002/ange.201200746GarcĂa-GonzĂĄlez, E., Soriano, M. D., Urones-Garrote, E., & LĂłpez Nieto, J. M. (2014). On the origin of the spontaneous formation of nanocavities in hexagonal bronzes (W,V)O3. Dalton Trans., 43(39), 14644-14652. doi:10.1039/c4dt01465kSzilaÌgyi, I. M., MadaraÌsz, J., Pokol, G., KiraÌly, P., TaÌrkaÌnyi, G., Saukko, S., ⊠Varga-Josepovits, K. (2008). Stability and Controlled Composition of Hexagonal WO3. Chemistry of Materials, 20(12), 4116-4125. doi:10.1021/cm800668xGuo, C., Yin, S., Zhang, P., Yan, M., Adachi, K., Chonan, T., & Sato, T. (2010). Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. Journal of Materials Chemistry, 20(38), 8227. doi:10.1039/c0jm01972kBotella, P., GarcĂa-GonzĂĄlez, E., LĂłpez Nieto, J. M., & GonzĂĄlez-Calbet, J. M. (2005). MoVTeNbO multifunctional catalysts: Correlation between constituent crystalline phases and catalytic performance. Solid State Sciences, 7(5), 507-519. doi:10.1016/j.solidstatesciences.2005.01.012Kong, Y., Sun, H., Zhao, X., Gao, B., & Fan, W. (2015). Fabrication of hexagonal/cubic tungsten oxide homojunction with improved photocatalytic activity. Applied Catalysis A: General, 505, 447-455. doi:10.1016/j.apcata.2015.05.015Botella, P., Solsona, B., LĂłpez Nieto, J. M., ConcepciĂłn, P., JordĂĄ, J. L., & DomĂ©nech-CarbĂł, M. T. (2010). MoâW-containing tetragonal tungsten bronzes through isomorphic substitution of molybdenum by tungsten. Catalysis Today, 158(1-2), 162-169. doi:10.1016/j.cattod.2010.05.024Griffith, W. P., & Lesniak, P. J. B. (1969). Raman studies on species in aqueous solutions. Part III. Vanadates, molybdates, and tungstates. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1066. doi:10.1039/j19690001066Zheng, Z., Yan, B., Zhang, J., You, Y., Lim, C. T., Shen, Z., & Yu, T. (2008). Potassium Tungsten Bronze Nanowires: Polarized Micro-Raman Scattering of Individual Nanowires and Electron Field Emission from Nanowire Films. Advanced Materials, 20(2), 352-356. doi:10.1002/adma.200701514Sanchez, C., Livage, J., & Lucazeau, G. (1982). Infrared and Raman study of amorphous V2O5. Journal of Raman Spectroscopy, 12(1), 68-72. doi:10.1002/jrs.1250120110SzilĂĄgyi, I. M., MadarĂĄsz, J., Pokol, G., Hange, F., Szalontai, G., Varga-Josepovits, K., & TĂłth, A. L. (2009). The effect of K+ ion exchange on the structure and thermal reduction of hexagonal ammonium tungsten bronze. Journal of Thermal Analysis and Calorimetry, 97(1), 11-18. doi:10.1007/s10973-008-9752-1Fouad, N. E., Nohman, A. K. ., Mohamed, M. A., & Zaki, M. I. (2000). Characterization of ammonium tungsten bronze [(NH4)0.33WO3] in the thermal decomposition course of ammonium paratungstate. Journal of Analytical and Applied Pyrolysis, 56(1), 23-31. doi:10.1016/s0165-2370(00)00084-xHuo, L., Zhao, H., Mauvy, F., Fourcade, S., Labrugere, C., Pouchard, M., & Grenier, J.-C. (2004). Synthesis and mixed conductivity of ammonium tungsten bronze with tunneling structures. Solid State Sciences, 6(7), 679-688. doi:10.1016/j.solidstatesciences.2004.03.036Perra, D., Drenchev, N., Chakarova, K., Cutrufello, M. G., & Hadjiivanov, K. (2014). Remarkable acid strength of ammonium ions in zeolites: FTIR study of low-temperature CO adsorption on NH4FER. RSC Adv., 4(99), 56183-56187. doi:10.1039/c4ra12504eOshihara, K., Hisano, T., & Ueda, W. (2001). Topics in Catalysis, 15(2/4), 153-160. doi:10.1023/a:1016630307377Sohn, J. R., & Park, M. Y. (1998). Characterization of Zirconia-Supported Tungsten Oxide Catalyst. Langmuir, 14(21), 6140-6145. doi:10.1021/la980222zWachs, I. E., & Routray, K. (2012). Catalysis Science of Bulk Mixed Oxides. ACS Catalysis, 2(6), 1235-1246. doi:10.1021/cs2005482TatibouĂ«t, J. M. (1997). Methanol oxidation as a catalytic surface probe. Applied Catalysis A: General, 148(2), 213-252. doi:10.1016/s0926-860x(96)00236-0Badlani, M., & Wachs, I. E. (2001). Catalysis Letters, 75(3/4), 137-149. doi:10.1023/a:1016715520904Chieregato, A., Soriano, M. D., Basile, F., Liosi, G., Zamora, S., ConcepciĂłn, P., ⊠LĂłpez Nieto, J. M. (2014). One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance. Applied Catalysis B: Environmental, 150-151, 37-46. doi:10.1016/j.apcatb.2013.11.045Omata, K., Matsumoto, K., Murayama, T., & Ueda, W. (2016). Direct oxidative transformation of glycerol to acrylic acid over Nb-based complex metal oxide catalysts. Catalysis Today, 259, 205-212. doi:10.1016/j.cattod.2015.07.016Chieregato, A., Basile, F., ConcepciĂłn, P., Guidetti, S., Liosi, G., Soriano, M. D., ⊠Nieto, J. M. L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over WâVâNbâO bronzes with hexagonal structure. Catalysis Today, 197(1), 58-65. doi:10.1016/j.cattod.2012.06.024Yun, Y. S., Lee, K. R., Park, H., Kim, T. Y., Yun, D., Han, J. W., & Yi, J. (2014). Rational Design of a Bifunctional Catalyst for the Oxydehydration of Glycerol: A Combined Theoretical and Experimental Study. ACS Catalysis, 5(1), 82-94. doi:10.1021/cs501307vKatryniok, B., Bonnotte, T., Dumeignil, F., & Paul, S. (2016). Production of Bioacrylic Acid. Chemicals and Fuels from Bio-Based Building Blocks, 217-244. doi:10.1002/9783527698202.ch
Characterization of the Lipopolysaccharide from a \u3cem\u3eRhizobium phaseoli\u3c/em\u3e Mutant that is Defective in Infection Thread Development
The lipopolysaccharide (LPS) from a Rhizobium phaseoli mutant, CE109, was isolated and compared with that of its wild-type parent, CE3. A previous report has shown that the mutant is defective in infection thread development, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that it has an altered LPS (K. D. Noel, K. A. VandenBosch, and B. Kulpaca, J. Bacteriol. 168:1392-1462, 1986). Mild acid hydrolysis of the CE3 LPS released a polysaccharide and an oligosaccharide, PS1 and PS2, respectively. Mild acid hydrolysis of CE109 LPS released only an oligosaccharide. Chemical and immunochemical analyses showed that CE3-PS1 is the antigenic O chain of this strain and that CE109 LPS does not contain any of the major sugar components of CE3-PS1. CE109 oligosaccharide was identical in composition to CE3-PS2. The lipid A\u27s from both strains were very similar in composition, with only minor quantitative variations. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of CE3 and CE109 LPSs showed that CE3 LPS separated into two bands, LPS I and LPS II, while CE109 had two bands which migrated to positions similar to that of LPS II. Immunoblotting with anti-CE3 antiserum showed that LPS I contains the antigenic O chain of CE3, PS1. Anti-CE109 antiserum interacted strongly with both CE109 LPS bands and CE3 LPS II and interacted weakly with CE3 LPS I. Mild-acid hydrolysis of CE3 LPS I, extracted from the polyacrylamide gel, showed that it contained both PS1 and PS2. The results in this report showed that CE109 LPS consists of only the lipid A core and is missing the antigenic O chain
Determination of non-toxic and subtoxic concentrations of potential antiviral natural anthraquinones
Anthraquinones-rich extracts of Heterophyllaea pustulata Hook f. (Rubiaceae) exhibited in vitro antiviral activity against Herpes Simplex Virus Type I, from which several anthraquinones (AQs) were isolated and identified. The Maximum Non-Cytotoxic Concentration (MNCC), the subtoxic concentration (SubTC), and the CC50 of each AQ were determined on a mammalian eukaryotic cell line (Vero cells) by means of Neutral Red uptake assay; the cytopathic effect was simultaneously evaluated by optical microscopy. The range of concentrations where each AQ did not exhibit cytotoxicity was established, which is limited by the MNCC: rubiadin 1-methyl ether, damnacanthol and pustuline were found to be markedly less cytotoxic. To the remaining AQs, we could estimate a SubTC (about 10 ÎŒg/mL) that assures 80 % cellular viability. Therefore, we determined a concentration range which could be used to evaluate the antiviral effect of each AQ since it ensures the viability of the host cell.Fil: Konigheim, Brenda Salome. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Medicina. Instituto de VirologĂa "Dr. J. M. Vanella"; ArgentinaFil: Comini, Laura Raquel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂa Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂsicas y Naturales. Instituto Multidisciplinario de BiologĂa Vegetal; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂmicas. Departamento de Farmacia; ArgentinaFil: Grasso, Sergio. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂmicas. Departamento de Farmacia; ArgentinaFil: Aguilar, Juan Javier. Universidad Nacional de CĂłrdoba. Facultad de Medicina. Instituto de VirologĂa "Dr. J. M. Vanella"; ArgentinaFil: Marioni, Juliana. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂa Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂsicas y Naturales. Instituto Multidisciplinario de BiologĂa Vegetal; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂmicas. Departamento de Farmacia; ArgentinaFil: Contigiani de Minio, Marta Silvia. Universidad Nacional de CĂłrdoba. Facultad de Medicina. Instituto de VirologĂa "Dr. J. M. Vanella"; ArgentinaFil: NĂșñez Montoya, Susana Carolina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto Multidisciplinario de BiologĂa Vegetal. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas FĂsicas y Naturales. Instituto Multidisciplinario de BiologĂa Vegetal; Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂmicas. Departamento de Farmacia; Argentin
- âŠ