123 research outputs found
์ํผํฉ ์ตํฉ์ฐ์์์ง์์ ํก๊ธฐ์ ๋ ์ํฅ์ ๋ํ ์คํ์ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :๊ณต๊ณผ๋ํ ๊ธฐ๊ณํญ๊ณต๊ณตํ๋ถ,2019. 8. ๋ฏผ๊ฒฝ๋.Recently, emissions regulations and CO2 regulations are becoming stricter due to the global warming and increased fine dusts in the air. Especially, the regulations for conventional diesel engines which has superiority on its power and thermal efficiency than spark ignition (SI) engines are mostly the target. Due to its locally rich region combustion characteristic, higher particulate matter (PM) emissions are emitted than SI engine. To reduce nitrogen oxides (NOx) emission, exhaust gas recirculation (EGR) was applied to lower the combustion temperature, and the additional use of after treatment systems such as lean NOx trap (LNT) or selective catalytic reduction (SCR) should be used these days. However, these additive after-treatment systems required high cost.
Therefore, many diesel engine researchers are in now focusing on the new combustion concept that would decrease emissions while maintaining its efficiency. The most frequently studied concept for this was homogeneous charge compression ignition (HCCI) concept, which improves in-cylinder air-fuel premixing ratio to realize the low emissions with high thermal efficiency. However, it was hard to lower the pressure rise rate under the high load condition. Thus, the combustion process using two different fuels with different reactivity, known as dual-fuel combustion or RCCI is mainly studied these days. Many studies have proven that dual-fuel combustion has a positive prospect in future combustion to achieve near-zero engine out emissions with high indicated thermal efficiency. However, incomplete combustion caused by the low temperature combustion resulted in high unburned HC emissions same as HCCI combustion, and also showed a limitation on high-load expansion because of the higher maximum in-cylinder pressure rise rate (mPRR). Thus, it is important to establish the operating strategy with dual-fuel combustion to achieve a low mPRR and emissions while maintaining high-efficiency.
Most of the researches about RCCI combustion was focused on the diesel injection strategies and low reactivity fuel mixing ratio to reduce emissions with high thermal efficiency. However, there were no such studies about reducing mPRR by slowing down the combustion process with deteriorating the early phase combustion region, which is occurred by diesel auto-ignition process. Since the pressure rise rate in dual-fuel combustion is the main issue, finding the most effective way of combustion process is necessary.
In this research, the characteristics of dual-fuel combustion on different hardware were studied to verify the effect of the in-cylinder flow motion on dual-fuel combustion. To see such an effect, different head types (swirl and tumble) were used with different combustion chamber shapes (conventional vs bathtub) since these two hardware systems are the representative factors that affects in-cylinder flow motion.
The first experimental results show that dual-fuel combustion is effected by various engine parameters, such as diesel injection timing, intake pressure and the low reactivity fuel ratio. To achieve low emissions with high thermal efficiency, there are sweet spots for diesel injection timings, intake pressure and the fuel rate. Considering emissions with the mPRR, EGR should be used properly, however, the combustion stability also should have been considered in low load condition.
The sweet spots for low to high load were different. For low load condition, gasoline (low reactivity fuel) ratio should not exceed 60 % to secure the combustion stability, and the diesel injection timing should not be advanced before certain point. However, for the high load condition, the combustion stability is not an issue, instead the pressure rise rate is too high. Thus, relatively higher ratio of low reactivity fuel should be used to have longer ignition delay and achieve low soot emission. In this experiment, the sweet spots were settled for the next step, which is optimization process.
The second experiment was to find the proper compression ratio for dual-fuel combustion while expanding the load condition. It is evident that the higher compression ratio engine gives higher thermal efficiency by theoretical approach, however, faster combustion process due to high compression ratio causes higher mPRR. In this research, higher compression ratio (16) engine showed higher thermal efficiency at low load condition however, a limitation on expanding high load condition was also shown due to the pressure rise rate. Thus, relatively lower compression ratio (14) was recommended for the dual-fuel combustion.
For the third experiment, it was to find the proper combustion chamber shape by changing the piston shape. With the conventional shape piston, the SOC was advanced by the effect of swirl. However, the combustion phase retarded more than bathtub piston at a certain point, which was effected by the squish region it has. Due to the curved piston shape, the abrupt combustion occurred under high load condition with high pressure rise rate, thus the highest load expansion was not possible. For the bathtub piston, the smooth premixed combustion was possible under high load condition, thus the bathtub piston was recommended for the dual-fuel combustion.
The last experimental achievement of this research was comparing swirl and tumble motion effect on dual-fuel combustion. To achieve higher thermal efficiency and low heat transfer loss, it is well known that the combustion duration should be shorter as possible. The reason for the higher thermal efficiency with swirl motion on low load combustion was due to the faster combustion occurred by faster air-fuel mixing of diesel fuel by swirl effect. However, under the high load condition, this combustion characteristic is unfavorable. Unlike the tumble motion flow, the fast combustion at the first stage of the combustion process causes high pressure rise rate, which could not be controlled by EGR rate. High EGR rate makes poor combustion by rich combustion under high load condition due to the limitation of intake pressure. On the other hand, tumble motion flow gives slow combustion rate in the first stage of the combustion, and contributes on faster combustion at the second stage of the combustion. With higher tumble motion, the latter combustion speed increases, resulting in faster overall burn duration. This is an ideal combustion process while conducting the high load expansion. With higher tumble motion, thermal efficiency can be improved with potential of expanding higher load condition. Therefore, this research can contribute to the practical application of dual-fuel combustion in light-duty diesel engines.์ต๊ทผ ์ง๊ตฌ ์จ๋ํ ๋ฐ ๋ฏธ์ธ ๋จผ์ง์ ๋ํ ๊ด์ฌ์ด ๋์์ง๋ฉด์ ์๋์ฐจ ๋ฐฐ๊ธฐ ๊ท์ ๋ฐ ์ด์ฐํํ์ ๊ท์ ๊ฐ ์ ์ฐจ ๊ฐํ๋๊ณ ์๋ค. ํนํ SI ์์ง์ ๋นํด ๋ ๋์ ์ถ๋ ฅ๊ณผ ํจ์จ์ ๋ผ ์ ์๋ ์ข
๋์ ๋์ ค ์์ง์ ๋ํ ๊ท์ ๊ฐ ๊ทธ ๋ชฉํ๊ฐ ๋๊ณ ์๋ค. ๋์ ค ์์ง์ ๊ตญ๋ถ์ ์ผ๋ก ๋ํํ ์ฐ๋ฃ์ ์์ถ์ฐฉํ๋ฅผ ํ๋ ์ฐ์ ํน์ฑ์ผ๋ก ์ธํด SI ์์ง์ ๋นํด ์
์์ ๋ฌผ์ง (PM)์ด ๋ง์ด ๋ฐฐ์ถ๋๋ค. ๋ํ ์ง์์ฐํ๋ฌผ (NOx)์ ์ค์ด๊ธฐ ์ํด ์ฐ์ ์จ๋๋ฅผ ๋ฎ์ถ๊ธฐ ์ํ ๋ฐฉ์์ธ ๋ฐฐ๊ธฐ๊ฐ์ค์ฌ์ํ (EGR)์ ์ฌ์ฉํด์๊ณ , ์ต๊ทผ์๋ ์ถ๊ฐ์ ์ผ๋ก lean NOx Trap (LNT) ํน์ ์ ํ์ ์ด๋งค ํ์๋ฒ (SCR, selective catalyst reduction) ํ์ฒ๋ฆฌ ์ฅ์น๋ฅผ ์ฌ์ฉํ๋ค. ํ์ง๋ง ์ด๋ฌํ ์ถ๊ฐ์ ์ธ ํ์ฒ๋ฆฌ ์ฅ์น๋ ๊ณ ๊ฐ์ ์ฅ๋น๋ก ์์ง ๊ฐ๊ฒฉ์ ๋์ด๋ ๋จ์ ์ด ์๋ค.
๊ทธ๋ฌ๋ฏ๋ก ๋ง์ ๋์ ค ์์ง ์ฐ๊ตฌ์๋ค์ ์์ง ์์ฒด์์ ๋ฐฐ๊ธฐ๋ฅผ ์ค์ด๋ฉด์ ๋์์ ๋์ ํจ์จ์ ์ ์งํ ์ ์๋ ์ ์ฐ์ ๊ฐ๋ฐ์ ์ง์คํ๊ณ ์๋ค. ๊ฐ์ฅ ๋ง์ด ์ฐ๊ตฌ๊ฐ ์งํ๋๋ ๋ด์ฉ์ HCCI ์ฐ์ ๋ฐฉ์์ผ๋ก ์ค๋ฆฐ๋ ๋ด๋ถ ๊ณต๊ธฐ ๋ฐ ์ฐ๋ฃ ์ํผํฉ๋ฅ ์ ๋์ฌ ์ ๋ฐฐ๊ธฐ ๊ณ ํจ์จ ์ฐ์๋ฅผ ์ด๋ค๋ธ๋ค. ํ์ง๋ง ์ด๋ฌํ ์ฐ์ ๋ฐฉ์์ ๊ณ ๋ถํ ์์ญ์ผ๋ก์ ํ์ฅ ์ ๋์ ์ค๋ฆฐ๋ ์๋ ฅ ์์น๋ฅ ์ ์ ์ดํ ์ ์๋ค. ๋ฐ๋ผ์ ์ต๊ทผ์๋ ๋ฐ์์ฑ์ด ์๋ก ๋ค๋ฅธ ๋ ์ฐ๋ฃ๋ฅผ ํ์ฉํ์ฌ ์ฐ์์ํค๋ ์ตํฉ์ฐ์, ์ฆ RCCI ์ฐ์์ ๋ํด ์ฐ๊ตฌ๊ฐ ๋ง์ด ์งํ๋๊ณ ์๋ค. ๋ง์ ์ฐ๊ตฌ๋ค์ ํตํด ์ตํฉ์ฐ์ ๊ธฐ์ ์ด ์ ๋ฐฐ๊ธฐ ๊ณ ํจ์จ์ ๋ง์กฑ์ํฌ ์ ์๋ ๋ฏธ๋์ ์ ์ฐ์ ๊ธฐ์ ์ด ๋ ์ ์์์ ๋ฐํ๋๋ค. ํ์ง๋ง HCCI ์ฐ์์ ๋ง์ฐฌ๊ฐ์ง๋ก ์ ์จ์ฐ์ ํน์ฑ์ ๊ฐ๊ธฐ ๋๋ฌธ์ ๋ค๋์ ๋ฏธ์ฐํํ์์ (HC) ๋ฐฐ์ถ์ด ์ฌ๊ฐํ๊ณ , ๋ง์ฐฌ๊ฐ์ง๋ก ๊ณ ๋ถํ ์์ญ์์์ ์ด์ ์์ ์ต๊ณ ์ค๋ฆฐ๋ ์๋ ฅ ์์น๋ฅ ์ด ์ง๋์น๊ฒ ๋๋ค๋ ๋จ์ ์ ๊ฐ์ง๊ณ ์๋ค. ๋ฐ๋ผ์ ์ต๊ณ ์๋ ฅ ์์น๋ฅ ์ ์ค์ด๊ณ ์ ๋ฐฐ๊ธฐ ๊ณ ํจ์จ์ ์ ์งํ ์ ์๋ ์ด์ ์ ๋ต์ ๋ํด ๊ธฐ์ด๋ฅผ ํ๋ฆฝํด ๋๋ ๊ฒ์ด ๋งค์ฐ ์ค์ํ๋ค.
์ผ๋ฐ์ ์ผ๋ก ๋ง์ RCCI ์ฐ๊ตฌ๋ ๋์ ค ์ฐ๋ฃ์ ๋ถ์ฌ ์๊ธฐ ๋ฐ ์ ๋ฐ์์ฑ ์ฐ๋ฃ์ ๋น์จ ๋ณํ๋ฅผ ํตํด ๋ฐฐ๊ธฐ ์ ๊ฐ ๋ฐ ์ดํจ์จ์ ๋์ด๋๋ฐ ์ง์คํด์๋ค. ํ์ง๋ง ๋์ ค์ ์๋ฐํ ํน์ฑ์ ๊ธฐ์ธํ ์ฐ์์ ์ด๋ฐ ์๋๋ฅผ ๋ฎ์ถ๋ฉด์ ์ค๋ฆฐ๋ ์ต๊ณ ์๋ ฅ ์์น๋ฅ ์ ๋ฎ์ถ๊ณ ์ ํ๋ ์ฐ๊ตฌ๋ ์งํ๋ ๋ฐ๊ฐ ์๋ค. ์ค๋ฆฐ๋ ์ต๊ณ ์๋ ฅ ์์น๋ฅ ์ ๋ถํ ํ์ฅ์ ์์ด ๊ฐ์ฅ ์ค์ํ ์์ ์ด๋ฏ๋ก, ์ต์ ์ ์ฐ์ ๊ณผ์ ์ ๋ํด ์ฐพ์๋ด๋ ๊ฒ์ ๋งค์ฐ ์ค์ํ๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ ์ค๋ฆฐ๋ ๋ด๋ถ ์ ๋ ํน์ฑ์ด ์ตํฉ์ฐ์์ ๋ฏธ์น๋ ์ํฅ์ ๋ํด ์์๋ณด๊ธฐ ์ํด ๋ค์ํ ํ๋์จ์ด ๋ณ๊ฒฝ์ ํตํด ์ค๋ฆฐ๋ ๋ด๋ถ ์ ๋์ ๋ณ๊ฒฝ์์ผ ์คํ์ ์งํํ๋ค. ์ด๋ฌํ ์ํฅ์ ๋ณด๊ธฐ ์ํด ์ ๋์ ๊ฐ์ฅ ํฐ ์ํฅ์ ์ฃผ๋ ์๋ก ๋ค๋ฅธ ํค๋ ํ์ (์ค์ vs ํ
๋ธ) ๋ฐ ์ฐ์์ค ํ์(์ข
๋ vs bathtub)์ ๋ณ๊ฒฝํด๊ฐ๋ฉฐ ๋น๊ต ์คํ์ ์งํํ๋ค.
์ฒซ ๋ฒ์งธ ์คํ ๊ฒฐ๊ณผ๋ฅผ ํตํด ์ตํฉ์ฐ์๊ฐ ๋์ ค ๋ถ์ฌ์๊ธฐ, ํก๊ธฐ ์๋ ฅ, ์ ๋ฐ์์ฑ ์ฐ๋ฃ ๋น์จ ๋ณํ์ ์ํฅ์ ๋ฐ๋ ๊ฒ์ ํ์ธํ๋ค. ์ ๋ฐฐ๊ธฐ ๊ณ ํจ์จ ์ฐ์๋ฅผ ์คํ์ํค๊ธฐ ์ํด ์ต์ ์ผ ๋์ ค ๋ถ์ฌ ์๊ธฐ, ํก๊ธฐ ์๋ ฅ ๊ทธ๋ฆฌ๊ณ ์ฐ๋ฃ ๋น์จ์ด ์์์ ํ์ธํ๋ค. ์ค๋ฆฐ๋ ์ต๊ณ ์๋ ฅ ์์น๋ฅ ๋ฐ ์ ๋ถํ ์ฐ์ ์์ ์ฑ์ ๊ณ ๋ คํ์ ๋ ์ ์ ํ EGR ์ฌ์ฉ์ด ํ์ํ๋ค๋ ๊ฒ ๋ํ ํ์ธํ๋ค.
๊ณ ๋ถํ ์์ญ์์์ ์ต์ ์กฐ๊ฑด์ ์์ดํ๋ค. ์ ๋ถํ ์ด์ ์กฐ๊ฑด์์๋ ๊ฐ์๋ฆฐ ๋น์จ์ด 60 % ์ด์์ด ๋ ๊ฒฝ์ฐ ์ฐ์ ์์ ์ฑ์ ํ๋ณดํ๊ธฐ ํ๋ค์ด ๊ทธ ์ด์์ผ๋ก ๊ณต๊ธํ ์ ์๊ณ , ๋์ ค ๋ถ์ฌ ์๊ธฐ ๋ํ ์ผ์ ํ ์๊ธฐ๋ฅผ ๋์ด ์ง๋์น๊ฒ ์กฐ๊ธฐ๋ถ์ฌ ๋ ๊ฒฝ์ฐ ์ฐ์ ์์ ์ฑ์ ํ๋ณดํ๊ธฐ ํ๋ค๋ค. ํ์ง๋ง ๊ณ ๋ถํ ์์ญ์์๋ ์ฐ์ ์์ ์ฑ์ ๋ฌธ์ ๊ฐ ๋์ง ์์ง๋ง ๋ฐ๋๋ก ์ค๋ฆฐ๋ ์๋ ฅ ์์น๋ฅ ์ด ๋๋ฌด ๋๋ค๋ ๋จ์ ์ด ์๋ค. ๋ฐ๋ผ์ ์
์์ ๋ฌผ์ง ์ ๊ฐ ๋ฐ ์ถฉ๋ถํ ์ ํ ์ง์ฐ์ ์ป๊ธฐ ์ํด ์ ๋ฐ์์ฑ ์ฐ๋ฃ(๊ฐ์๋ฆฐ)์ ๋น์จ์ด ๋์์ ธ์ผ ํ๋ค. ๋ถํ๋ณ ๊ธฐ์ด ์คํ์ ํตํด ์ต์ ํ ์คํ์ ๋ํ ์์ญ๋ณ ์ต์ ์ ๋ค์ ๋ํ ๊ธฐ์ค์ ์ก์๋ค.
๋ ๋ฒ์งธ ์ฐ๊ตฌ๋ก๋ ๋ถํ ํ์ฅ ์ธก๋ฉด์ ์์ด ์ต์ ์ ์์ถ๋น๋ฅผ ํ์ธํ๋ ์คํ์ด ์งํ๋์๋ค. ์ด๋ก ์ ์ผ๋ก ๊ณ ์์ถ๋น ์์ง์ด ๋ ๋์ ์ดํจ์จ์ ์ป์ ์ ์์ง๋ง, ๊ณ ์์ถ๋น์ ์ํ ๋น ๋ฅธ ์ฐ์ ๋ฐ์์ผ๋ก ์ธํด ๋์ ์ต๊ณ ์ค๋ฆฐ๋ ์๋ ฅ ์์น๋ฅ ์ด ๋ํ๋๋ค. ๋ณธ ์คํ์ ํตํด ์ ๋ถํ ์์ญ์์ ๊ณ ์์ถ๋น ์์ง (16)์์ ๋ ๋์ ํจ์จ์ ์ป์ ์ ์์์ผ๋, ์ง๋์น ์ค๋ฆฐ๋ ์๋ ฅ ์์น๋ฅ ๋ก ์ธํด ๋ถํ ํ์ฅ์ ํ๊ณ๊ฐ ์๋ ๊ฒ์ ํ์ธํ๋ค. ๋ฐ๋ผ์ ๋น๊ต์ ์์ถ๋น๊ฐ ๋ฎ์ (14) ์์ง์ด ๋ถํํ์ฅ์ ๊ณ ๋ คํ ์ตํฉ์ฐ์ ์์ง์ ๋ ์ ์ ํจ์ ํ์ธํ๋ค.
์ธ ๋ฒ์งธ ์ฐ๊ตฌ๋ก๋ ์ต์ ์ ์ฐ์์ค ํ์์ ์ฐพ๊ธฐ ์ํด ํผ์คํค ํ์์ ๋ณ๊ฒฝํด๊ฐ๋ฉฐ ์คํ์ ์งํํ๋ค. ์ข
๋์ ํผ์คํค ํ์์์์ ์ฐ์๋ bathtub ํผ์คํค ํ์์ ๋นํด ์ค์ ์ํฅ์ด ๊ฐํด ์ฐ์ ์์ ์ง์ ์ด ๋น ๋ฅธ ๊ฒ์ ํ์ธ ํ ์ ์์๋ค. ๋ค๋ง, ๋์ ค ๋ถ์ฌ์๊ธฐ๊ฐ ์ผ์ ์์ค์ด ๋์ด๊ฐ๊ฒ ๋ ๊ฒฝ์ฐ squish ์์ญ์ผ๋ก ๋ถ์ฌ๋ ์ฐ๋ฃ์ ์ํฅ์ ์ํด ์ฐ์์์ด bathtub์ ๋นํด ๋ฆ์ด์ง๋ ๊ฒ์ ํ์ธ ํ ์ ์์๋ค. ์ด๋ฌํ ๊ตด๊ณก์ง ํผ์คํค ํ์์ผ๋ก ์ธํด ๊ณ ๋ถํ ์์ญ์์ ๊ธ์์ค๋ฌ์ด ์ฐ์ ๋ฐ์์ด ์ผ์ด๋๋ ๊ฒ์ ํ์ธํ ์ ์์๊ณ , ๊ทธ๋ก ์ธํด ์ค๋ฆฐ๋ ์๋ ฅ ์์น๋ฅ ์ด ๋์์ ธ ๋ถํ ํ์ฅ์ ์ด๋ ค์์ด ์๋ ๊ฒ์ ํ์ธํ๋ค. ๋ฐ๋ฉด bathtub ํผ์คํค ํ์์ ๊ฒฝ์ฐ ๋ถ๋๋ฌ์ด ์ํผํฉ ์ฐ์๊ฐ ๊ฐ๋ฅํ์ผ๋ฉฐ, ์ตํฉ์ฐ์์์ ๋ถํํ์ฅ์ ์ํ ํผ์คํค ํ์์ผ๋ก ์ ํฉํจ์ ํ์ธํ ์ ์์๋ค.
๋ง์ง๋ง ์ฐ๊ตฌ๋ก๋ ์ค์ ๋ฐ ํ
๋ธ ์ ๋์ด ์ตํฉ์ฐ์์ ๋ฏธ์น๋ ์ํฅ์ ๋ํด ํ์ธํ์๋ค. ์ผ๋ฐ์ ์ผ๋ก ๊ณ ํจ์จ ์ฐ์๋ฅผ ์ป๊ธฐ ์ํด ์ฐ์ ๊ธฐ๊ฐ์ ์งง๊ฒ ํ์ฌ ์ด์ ๋ฌ ์์ค์ ์ค์ด๋ ๊ฒ์ด ์ค์ํ๋ค. ์ ๋ถํ ์์ญ์์ ์ค์ ์ ๋์ด ์ตํฉ์ฐ์์ ์์ด ๊ณ ํจ์จ ๊ฒฐ๊ณผ๋ฅผ ๋ด๋ ๊ฒ์ ์ค์ ์ ๋์ ์ํด ์ฐ๋ฃ์ ๊ณต๊ธฐ๊ฐ ๋น ๋ฅด๊ฒ ์ํผํฉ๋์ด ์ฐ์๊ฐ ์งํ๋๊ณ , ๊ทธ์ ๋ฐ๋ผ ์ง๊ฐ ๋ ์ฐ์์ ๋ฐ ๋น ๋ฅธ ์ฐ์๊ธฐ๊ฐ์ ๊ฐ์ ธ์ฌ ์ ์๊ธฐ ๋๋ฌธ์ด๋ค. ํ์ง๋ง ๊ณ ๋ถํ ์์ญ์์ ์ด์ ์ด ๋ ๊ฒฝ์ฐ ์ด๋ฌํ ๋น ๋ฅธ ์ฐ์๋ ์ ํฉํ์ง ์๋ค. ์ด๋ ํ
๋ธ ์ ๋์์์ ์ฐ์์ ๋ค๋ฅด๊ฒ ์ด๋ฐ ์ฐ์ ํน์ฑ์ด ๋งค์ฐ ๋น ๋ฅด๊ธฐ ๋๋ฌธ์ ์ค๋ฆฐ๋ ์๋ ฅ ์์น๋ฅ ์ด EGR์ ์ํด์๋ ์ ์ดํ๊ธฐ๊ฐ ํ๋ค๋ค. ๋ํ ํก๊ธฐ์๋ ฅ ์ฌ์ฉ ์ ํ์ผ๋ก ์ธํด ๋์ EGR ์ฌ์ฉ์ ๋ํํ ์ฐ์๋ฅผ ์ผ๊ธฐํ์ฌ ์ฐ์ ์์ ์ฑ์ ์ ์ฐจ ๋จ์ด๋จ๋ฆฐ๋ค. ๋ฐ๋ฉด์ ํ
๋ธ ์ ๋์ ๊ฒฝ์ฐ ์ด๋ฐ ์ฐ์๋ ์๋์ ์ผ๋ก ๋๋ฆฐ ๋ฐ๋ฉด ํ๋ฐ๋ถ ์ฐ์๊ฐ ์๋นํ ๋น ๋ฅธ ํน์ฑ์ด ์๋ค. ํ
๋ธ ์ ๋์ด ๊ฐํ ๋ ์๋ก ํ๋ฐ๋ถ ์ฐ์ ์๋๊ฐ ๋นจ๋ผ์ง๊ฒ ๋๊ณ , ์ ์ฒด์ ์ผ๋ก ์ฐ์ ๊ธฐ๊ฐ์ ์ค์ผ ์ ์๋ค. ์ด๋ฌํ ์ฐ์ ํน์ฑ์ ์ตํฉ์ฐ์ ๊ณ ๋ถํ ํ์ฅ์ ์์ด ๊ฐ์ฅ ์ด์์ ์ธ ์ฐ์ ๋ฐฉ๋ฒ์ด๋ผ๊ณ ํ ์ ์๋ค. ๋์ ํ
๋ธ ์ ๋์ ํตํด ๋ ๋์ ์ดํจ์จ์ ์ป์ ์ ์๊ณ , ์ต๊ณ ๋ถํ ํ์ฅ ๊ฐ๋ฅ์ฑ ๋ํ ๋์์ง๋ค. ๋ฐ๋ผ์ ๋ณธ ์ฐ๊ตฌ์ ๊ฒฐ๊ณผ๋ ์ตํฉ์ฐ์๋ฅผ ์น์ฉ ๋์ ค ์์ง์ ์ค์ง์ ์ผ๋ก ์ ์ฉํ๊ธฐ ์ํ ์ด์์ ๋ง๋ จํ์๋ค.Chapter 1. Introduction 1
1.1 Research Background and Motivation 1
1.1.1 Emissions regulations 1
1.1.2 Literature Review (advanced CI combustion concepts) 8
1.1.3 Dual-fuel PCI combustion concept 14
1.2 Research Objective 18
Chapter 2. Experimental Apparatus 21
2.1 Single cylinder dual-fuel combustion engine 21
2.1.1 Test engine specifications 21
2.1.2 Test head specifications 28
2.1.3 Test piston specifications 32
2.2 Engine test and measurement equipment 34
2.2.1 Engine test equipment 34
2.2.2 Tested fuels and measurement systems for fuel flow rate 36
2.2.3 Measurement systems for emissions and EGR 41
2.2.4 Measurement systems for combustion analysis 45
Chapter 3. Experimental Results of Various Engine Parameter Effects on Gasoline/Diesel Dual-fuel Combustion 51
3.1 Combustion Characteristics of Dual-fuel Combustion by varying engine parameters (ฮฆ / Diesel Ratio / Diesel Injection Timing) 52
3.1.1 Experimental conditions 52
3.1.2 Experimental results and analysis (low rpm / load condition) 55
3.1.3 Experimental results and analysis (high rpm / load condition) 71
3.2 Effect of EGR rate on dual-fuel combustion 81
3.2.1 Experimental conditions 81
3.2.2 Experimental results and analysis 83
3.3 Effects of compression ratio (Cr 16 vs 14) 93
3.3.1 Experimental conditions 93
3.3.2 Results of combustion and emissions characteristics with different injection timings and gasoline rate (Cr 16 vs 14) 95
3.4 Optimization of Dual-fuel PCI combustion under different compression ratios (Cr 16 vs 14) 105
3.4.1 Experimental conditions 105
3.4.2 Optimization process of dual-fuel PCI combustion 109
3.4.3 Experimental results and analysis 111
3.5 Effect of Combustion Chamber (Stock vs Bathtub) 125
3.5.1 Motivation 125
3.5.2 Experimental conditions 125
3.5.3 Experimental results and analysis 130
Chapter 4. Experimental Results of Intake flow motion (Swirl vs Tumble) Effects Dual-fuel Combustion 144
4.1 Motivation 144
4.2 Effect of Swirl Control Valve on dual-fuel combustion 146
4.2.1 Experimental conditions 146
4.2.2 Experimental results and analysis 148
4.3 Effect of Head Shape Part 1: Swirl vs Tumble 158
4.3.1 Experimental conditions 158
4.3.2 Experimental results and analysis 163
4.4 Effects of Head Shape Part 2: High vs Low Tumble 189
4.4.1 Motivation 189
4.4.2 Experimental conditions 190
4.4.3 Experimental results and analysis 193
Chapter 5. Conclusions 209
Chapter 6. Bibliography 214
๊ตญ ๋ฌธ ์ด ๋ก 227Docto
์ฃผ์ฌํ ์กฐ์ ์จ ํฐ๋๋ง ํ๋ฏธ๊ฒฝ์ ์ด์ฉํ ๊ณ ์จ ์ด์ ๋์ฒด ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์์ฐ๊ณผํ๋ํ ๋ฌผ๋ฆฌยท์ฒ๋ฌธํ๋ถ(๋ฌผ๋ฆฌํ์ ๊ณต),2019. 8. ์ด์งํธ.Since the first High-TC cuprate superconductor was discovered in 1986, tremendous quantity of theoretical and experimental studies have been conducted. Despite enthusiastic endeavors, the phenomena in cuprate superconductors are not fully understood and conundrums are mainly originated from the complicated phase diagram where various phases are entangled.
In this thesis, I will present the first application of nanometer resolution Scanning Josephson Tunneling Microscopy (SJTM) to a high-TC cuprate superconductor, Bi2Sr2CaCu2O8+x. Josephson current, or Cooper-pair tunneling current, enables the direct access to superconducting order parameter and superconducting condensate. An in-situ fabricated Bi2Sr2CaCu2O8+x-tip is used with an aid of in-situ tip preparation stage.
SJTM studies are conducted at two different temperatures, 4.2 K and 50 mK. Detailed characterizations demonstrated imaging capability of Josephson critical current with nanometer resolution for both temperatures. In the SJTM study at 4.2 K, spatial variation of superconducting gap is directly measured for the first time, while the temperature window for SJTM is widely expanded to 4.2 K from mK. In the SJTM study at 50 mK, periodic modulation of superconducting condensate is observed for the first time.1986๋
์ต์ด๋ก ๊ณ ์จ ์ด์ ๋์ฒด๊ฐ ๋ฐ๊ฒฌ๋ ์ดํ ๋ง์ ์ด๋ก ์ ๋ฐ ์คํ์ ์ฐ๊ตฌ๊ฐ ์งํ๋์๋ค. ์ด๋ฌํ ๋
ธ๋ ฅ์๋ ๋ถ๊ตฌํ๊ณ ๊ตฌ๋ฆฌํํฉ๋ฌผ ๊ณ ์จ ์ด์ ๋์ฒด ํ์์ ์์ ํ ์ดํดํ์ง ๋ชปํ๊ณ ์๊ณ , ์ด๋ฌํ ๋์ ๋ค์ ์ฌ๋ฌ ์๋ค์ด ์ฝํ์๋ ์ํํ ๊ทธ๋ฆผ์์ ๊ธฐ์ธํ๋ค. ๋ณธ ์ฐ๊ตฌ๋ ๊ณ ์จ ์ด์ ๋ ํ์์ ์ง์ ์ ์ผ๋ก ์ ๊ทผํ๊ณ ์ ํ์๋ค.
๋ณธ ์ฐ๊ตฌ์์๋ ๋๋
ธ๋ฏธํฐ ํด์๋ ฅ์ ๊ฐ์ง ์ฃผ์ฌํ ์กฐ์
์จ ํฐ๋๋ง ํ๋ฏธ๊ฒฝ ์ ์ฒ์์ผ๋ก ๊ณ ์จ ์ด์ ๋์ฒด์ธ Bi2Sr2CaCu2O8+x์ ์ ์ฉํ์๋ค. ์กฐ์
์จ ์ ๋ฅ ํน์ Cooper-pair ํฐ๋๋ง ์ ๋ฅ๋ฅผ ํตํด ์ด์ ๋ ์ง์ ๋ณ์์ ์ด์ ๋ ์์ถ์ฒด๋ฅผ ์ธก์ ํ ์ ์์๋ค. In-situ ํ ์คํ
์ด์ง๋ฅผ ํตํด in-situ ๊ฐ๊ณตํ Bi2Sr2CaCu2O8+xํ์ด ์ฌ์ฉ๋์๋ค.
์ฃผ์ฌํ ์กฐ์
์จ ํฐ๋๋ง ํ๋ฏธ๊ฒฝ ์ฐ๊ตฌ๋ 4.2 K๊ณผ 50 mK ๋ ์จ๋์์ ์ํํ์๋ค. ๋ ์จ๋ ๋ชจ๋์์ ๋๋
ธ๋ฏธํฐ ํด์๋๋ก ์กฐ์
์จ ์๊ณ ์ ๋ฅ๋ฅผ ์ธก์ ํ ์ ์์์ผ๋ก ์์ธํ ๊ท๋ช
ํ๋ค. 4.2 K์์ ์ํํ ์ฃผ์ฌํ ์กฐ์
์จ ํฐ๋๋ง ํ๋ฏธ๊ฒฝ ์ฐ๊ตฌ์์๋ ์ฒ์์ผ๋ก ์ด์ ๋ ๊ฐญ์ ๊ณต๊ฐ์์ ๋ณํ๋ฅผ ์ง์ ์ธก์ ํ์์ผ๋ฉฐ, ์ฃผ์ฌํ ์กฐ์
์จ ํฐ๋๋ง ํ๋ฏธ๊ฒฝ์ ์ธก์ ๊ฐ๋ฅ ์จ๋ ๋ฒ์๋ฅผ mK์์ 4.2 K์ผ๋ก ์์น์์ผฐ๋ค. 50 mK์์ ์ํํ ์ฃผ์ฌํ ์กฐ์
์จ ํฐ๋๋ง ํ๋ฏธ๊ฒฝ ์ฐ๊ตฌ์์๋ ์ด์ ๋ ์์ถ์ฒด๊ฐ ์ฃผ๊ธฐ์ ์ผ๋ก ๋ณํํ๋ ๊ฒ์ผ๋ก ์ฒ์์ผ๋ก ๊ด์ธกํ์๋ค.Chapter 1. Introduction 1
1.1 Overview 1
1.2 Brief History 1
1.3 Conventional Superconductivity 3
Chapter 2. Phenomenology of Cuprates 8
2.1 Crystal Structure 8
2.2 Phase Diagram 10
2.2.1 Antiferromagnetic Insulator: CuO2 Physics 11
2.2.2 d-wave Superconductivity 15
2.2.3 Pseudogap 16
2.2.4 Density Waves in Cuprates 19
Chapter 3. Scanning Tunneling Microscopy 22
3.1 Principles of STM 22
3.1.1 Electron Tunneling 22
3.1.2 Operation of STM 25
3.2 Types of Measurements 26
3.2.1 Topography 26
3.2.2 Scanning Tunneling Spectroscopy 28
3.3 Design and Construction of Low Temperature-STM 29
3.3.1 ULV-Lab 30
3.3.2 Cryostat 33
3.3.3 STM Head 34
Chapter 4. Scanning Josephson Tunneling Microscopy 38
4.1 Introduction 38
4.2 Brief History 38
4.3 Single-particle Tunneling in Superconductor Junction 39
4.3.1 Quasiparticle Tunneling 39
4.3.2 Andreev Reflection 42
4.4 Josephson Effect 43
4.4.1 Ideal Josephson Junction 43
4.4.2 The RCSJ Model 46
4.4.3 Thermal Fluctuations 50
4.4.4 Ultra-small Josephson Junction I 52
4.4.5 Ultra-small Josephson Junction II: Incoherent-pair Tunneling 56
4.5 Technical Aspects 61
4.5.1 Tip Fabrication 61
4.5.2 Ultra-low Vibration 63
4.5.3 Characterization of Bi2Sr2CaCu2O8+x-tip 63
Chapter 5. Scanning Josephson Tunneling Microscopy at 4.2 K 65
5.1 Introduction 65
5.2 Characterization of a Bi2Sr2CaCu2O8+x-tip 65
5.3 Single-tunneling Regime to Pair-tunneling Regime 71
5.4 Characterization of r-space resolution 75
5.5 Superconducting Gap map 79
Chapter 6. Scanning Josephson Tunneling Microscopy at 50 mK 85
6.1 Introduction 85
6.2 Cooper-pair Density Wave 85
6.2.1 Fulde-Ferrel-Larkin-Ovchinnikov State 85
6.2.2 Pair Density Wave in Cuprates 88
6.3 Characterization of a Bi2Sr2CaCu2O8+x-tip 89
6.4 Single-tunneling Regime to Pair-tunneling Regime 91
6.5 Characterization of r-space resolution 92
6.6 Detection of Cooper-pair Density Wave 94
6.7 Discussion 96
Chapter 7. Conclusion 97
Biliography 99Docto
์ ๊ธฐ์ ๋ณ์ ์ฒด์ ์์ฐฉ์ ๋์ ๋ํ ์ฐ๊ตฌ
Thesis (doctoral)--์์ธ๋ํ๊ต ๋ํ์ :ํํ๊ณตํ๊ณผ,1998.Docto
์ ํํ ์ด๋ฏธ์ง ๋ถ๋ฅ๋ฅผ ์ํ ์ด์ฐ ์ฝ์ฌ์ธ ๋ณํ ๊ธฐ๋ฐ ํฉ์ฑ๊ณฑ ์ ๊ฒฝ๋ง
MasterFeatures extracted from convolutional layers can be used in Convolutional Neural Networks (CNNs) to classify images.
In recent years, to increase the classification accuracy, CNNs that use features from the frequency domain have been introduced.
The Discrete Cosine Transform (DCT) is one of the main transform functions that can be used to obtain frequency features.
Such frequency features can help identify distinguishing characteristics of images that are not easily observable using the spatial features extracted from images using classical CNNs.
This thesis proposes a method that combines spatial and frequency features to increase the classification accuracy.
This method changes the backpropagation equation, which is the basis for the training of neural networks, to use both spatial and frequency values.
The proposed method was evaluated by measuring training times and image classification accuracies with a variety of standard image classification datasets.
For a given desired level of image classification accuracy, the training time required, which is directly proportional to the number training epochs used, was substantially reduced in comparison to previous state-of-the-art methods.
When evaluated using the highest image classification accuracies achieved, the proposed method consistently outperformed all other methods, with the increase most significant (an increase of 6.79 percentage points) when a texture image dataset was used.
This is achieved using the same level of total data parameter size required for training.
The proposed method can contribute to the improvement of data analysis systems for sports games
- โฆ