50 research outputs found
ํ์, ๊ฒฝ๋ น๋์, ๊ทธ๋ฆฌ๊ณ ์ฌ๋ฌธ์์ ๋ณํ๋ฏธ๊ตฌ์กฐ์ ์ด๋ค์ด ์ญ์ ๋์์ ์ง์งํ ์ด๋ฐฉ์ฑ์ ๋ฏธ์น๋ ์ํฅ
ํ์๋
ผ๋ฌธ(๋ฐ์ฌ) -- ์์ธ๋ํ๊ต๋ํ์ : ์์ฐ๊ณผํ๋ํ ์ง๊ตฌํ๊ฒฝ๊ณผํ๋ถ, 2023. 8. ์ ํด๋ช
.Seismic anisotropy has been observed in worldwide subduction zones, and one generally accepted hypothesis is that hydrous mineral abundant in subduction zones by intense hydration is important to understand the seismic anisotropy. Hydrous minerals have been characterized by intrinsically high elastic anisotropy of their single crystal, and their strong crystallographic preferred orientations (CPOs) formed by plastic deformation can play a key role to generate a strong seismic anisotropy in subduction zones. However, there are a lot of hydrous minerals in subduction zones and a lack of study about their CPOs formed by subduction-related deformation. Talc and chloritoid are representative hydrous minerals in mantle wedge and subduction zone interfaces, and serpentine is considered to be the most abundant hydrous mineral in the mantle wedge. Therefore, I measured the CPOs of talc in garnet-chloritoid-talc schists in the Makbal complex in Tianshan (Kazakhstan-Kyrgyzstan) and talc-tremolite-chlorite schists in the Valla complex in Scotland (England), the CPOs of chloritoid in the Makbal Grt-Cld-Tlc schists, and the CPOs of antigorite serpentine in diopside serpentinites in the Monte San Petrone area in Corsica (France).
The CPO of talc showed the strong concentration of [001] axes normal /subnormal to the foliation and the weak girdle of (100) and (010) poles subparallel to the foliation. The strong alignment of talc [001] axes caused high P-wave anisotropy (AVp = 67 โ 72 %), and negative radial anisotropy of P-wave at high-angle (ฮธ > 50ยฐ) subduction zones.
The CPO of chloritoid displayed a strong distribution of [001] axes subnormal to the foliation and the weak girdle of (100) and (010) poles subparallel to the foliation. The elastic anisotropy of single-crystal chloritoid was calculated for the first time, and the PโT stability of chloritoid was re-evaluated by pseudosection studies. It was found that the combination of the CPO and the elastic anisotropy can influence the trench-parallel anisotropy of S-wave (AVs = 9.7 โ 18.1 %) in subduction zones with cold geotherms.
The CPO of antigorite serpentine presented the strong maxima of [001] axes normal/subnormal to the foliation with a weak girdle normal to the lineation. Combined with the CPO of diopside in the serpentinites, it was found that the formation of serpentine CPO can be influenced by topotactic growth of serpentine from diopside. This analysis also revealed a new type of diopside CPO of (100) poles strongly oriented normal to the foliation, which can be formed by the basal glide of serpentine (001) plane under the syn-kinematic serpentinization. It suggested that the antigorite CPO can be very important to cause the trench-parallel S-wave anisotropy in subduction zones.
In summary, it is emphasized that the strong CPOs of hydrous minerals such as talc, chloritoid, and serpentine, play an important role in interpreting the anomalously strong seismic anisotropy observed in subduction zones.์ ์ธ๊ณ์ ์ผ๋ก ์ญ์
๋์์๋ ์ง์งํ ์ด๋ฐฉ์ฑ์ด ๊ด์ฐฐ๋๊ณ ์์ผ๋ฉฐ ์ญ์
๋์์ ํ๋ฐํ ์ผ์ด๋๋ ์ํ์์ฉ์ผ๋ก ์ธํด ํ๋ถํ๊ฒ ์ฐ์ถ๋๋ ํจ์๊ด๋ฌผ๋ค์ด ์ด๋ฌํ ์ง์งํ ์ด๋ฐฉ์ฑ์ ์ค์ํ๋ค๋ ๊ฒ์ด ์ผ๋ฐ์ ์ผ๋ก ์๋ ค์ ธ ์๋ค. ํจ์๊ด๋ฌผ๋ค์ ๊ทธ ๋จ๊ฒฐ์ ์ด ๋งค์ฐ ํฐ ํ์ฑ์ ์ด๋ฐฉ์ฑ์ ๊ฐ๊ณ ์๋ ๊ฒ์ด ํน์ง์ด๋ฉฐ, ์ด ๊ด๋ฌผ๋ค์ด ์ฐ์ฑ ๋ณํ์ ๋ฐ์ ํ์ฑ๋๋ ๊ฐํ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ (crystallographic preferred orientation; CPO)์ ๊ฐํ ์ง์งํ ์ด๋ฐฉ์ฑ์ ์ผ๊ธฐํ๋ ๋ฐ์ ์์ด ๋งค์ฐ ์ค์ํ๋ค. ๊ทธ๋ฌ๋, ์ญ์
๋์๋ ๋งค์ฐ ๋ง์ ์ข
๋ฅ์ ํจ์๊ด๋ฌผ๋ค์ด ์ฐ์ถ๋๋ฉฐ ๊ทธ ๊ด๋ฌผ๋ค์ด ์ญ์
๋์์ ๋ณํ์ ๋ฐ์ ๋ง๋ค์ด์ง๋ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ ๋ํ ์ฐ๊ตฌ๊ฐ ๋ถ์กฑํ ์ค์ ์ด๋ค. ํ์๊ณผ ๊ฒฝ๋
น๋์์ ๋งจํ ์ป์ง์ ์ญ์
๊ฒฝ๊ณ๋ฉด์์ ์ฐ์ถ๋๋ ๋ํ์ ์ธ ํจ์๊ด๋ฌผ์ด๋ฉฐ, ์ฌ๋ฌธ์์ ๋งจํ ์ป์ง์์ ๊ฐ์ฅ ํ๋ถํ๊ฒ ์ฐ์ถ๋๋ ํจ์๊ด๋ฌผ๋ก ์๋ ค์ ธ ์๋ค. ๋ฐ๋ผ์, ๋ณธ ํ์๋
ผ๋ฌธ์์๋ ์นด์ํ์คํ-ํค๋ฅด๊ธฐ์ฆ์คํ์ ํ
์จ ์ง์ญ ๋ด ๋ง๋ฐ ๋ณตํฉ์ฒด์์ ์ฐ์ถ๋๋ ์๋ฅ์-๊ฒฝ๋
น๋์-ํ์ ํธ์๊ณผ ์๊ตญ ์ค์ฝํ๋๋์ ๋ฐ๋ผ ๋ณตํฉ์ฒด์์ ์ฐ์ถ๋๋ ํ์-ํธ๋ ๋ชฐ๋ผ์ดํธ-๋
น๋์ ํธ์ ๋ด์์ ๊ด์ฐฐ๋๋ ํ์ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ ์ธก์ ํ์๊ณ , ๋ง๋ฐ ๋ณตํฉ์ฒด์ ์๋ฅ์-๊ฒฝ๋
น๋์-ํ์ ํธ์ ๋ด์์ ๊ด์ฐฐ๋๋ ๊ฒฝ๋
น๋์ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ ์ธก์ ํ์์ผ๋ฉฐ, ๋ํ ํ๋์ค ์ฝ๋ฅด์์นด์ ๋ชฌํ
์ฐ ํ์ดํธ๋ก ์ผ๋์์ ์ฐ์ถ๋๋ ๋ค์ด์ต์ฌ์ด๋ ์ฌ๋ฌธ์ ๋ด์์ ๊ด์ฐฐ๋๋ ์ํฐ๊ณ ๋ผ์ดํธ ์ฌ๋ฌธ์์ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ ์ธก์ ํ์๋ค.
ํ์์ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ ํ์์ [001]์ถ์ด ์ฝ๋ฆฌ์ ์์ง/์์์งํ๊ฒ ๊ฐํ ๋ฐฐ์ด์ ๋ณด์ฌ์ฃผ์๊ณ , (100) ์ (010) ๊ทน์ ์ฝ๋ฆฌ์ ์ํํํ ์ฝํ ๊ฑฐ๋คํํ์ ๋ฐฐ์ด์ ๋ณด์ฌ์ฃผ์๋ค. ํ์์ ๊ฐํ [001]์ถ ๋ฐฐ์ด์ ๊ฐํ Pํ ์ด๋ฐฉ์ฑ (AVp = 67 โ 72 %)์ ๋ง๋ค ์ ์์์ ๋ฐ๊ฒฌํ๊ณ , ๊ณ ๊ฐ (ฮธ > 50ยฐ)์ ์ญ์
๋์์ ์์ Pํ ๋ฐฉ์์ด๋ฐฉ์ฑ์ ๋ง๋ค ์ ์์์ ๋ฐํ๋๋ค.
๊ฒฝ๋
น๋์์ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ ๊ฒฝ๋
น๋์์ [001]์ถ์ด ์ฝ๋ฆฌ์ ์์์งํ๊ฒ ๊ฐํ๊ฒ ๋ฐฐ์ดํ๋ ํน์ง์ ๋ณด์๊ณ , (100) ์ (010)๊ทน์ ์ฝ๋ฆฌ์ ์ํํํ๊ฒ ์ฝํ ๊ฑฐ๋คํํ ๋ฐฐ์ด์ ๋ณด์ฌ์ฃผ์๋ค. ์ด๋ฒ ์ฐ๊ตฌ๋ฅผ ํตํด ๊ฒฝ๋
น๋์ ๋จ๊ฒฐ์ ์ ํ์ฑ์ ์ด๋ฐฉ์ฑ์ด ์ต์ด๋ก ๊ณ์ฐ๋์์ผ๋ฉฐ, ๊ฒฝ๋
น๋์์ด ์์ ํ ์จ๋-์๋ ฅ ์กฐ๊ฑด์ ์๋์น์
์ฐ๊ตฌ๋ก ์ฌ๊ฒ์ฆํ์๋ค. ๊ฒฝ๋
น๋์์ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ ๊ฒฐ๊ณผ์ ๋จ๊ฒฐ์ ์ ํ์ฑ์ ์ด๋ฐฉ์ฑ์ ๋ชจ๋ ๊ณ ๋ คํ๋ฉด, ์ด๋ค์ด ์ฐจ๊ฐ์ด ์ญ์
๋์์ ๊ด์ธก๋๋ ํด๊ตฌ-ํํํ Sํ ์ด๋ฐฉ์ฑ (AVs = 9.7 โ 18.1 %)์ ํฌ๊ฒ ์ํฅ์ ์ค ์ ์์์ ์์๋๋ค.
์ฌ๋ฌธ์์ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ ์ฌ๋ฌธ์์ [001]์ถ์ด ์ฝ๋ฆฌ์ ์์ง/์์์งํ๊ฒ ๊ฐํ ๋ฐฐ์ด์ ๋ณด์ด๋ฉด์ ์ ๊ตฌ์กฐ์ ์์งํ ์ฝํ ๊ฑฐ๋คํํ์ ๋ฐฐ์ด์ ํจ๊ป ๋ณด์ฌ์ฃผ์๋ค. ์ฌ๋ฌธ์ ๋ด ๋ค์ด์ต์ฌ์ด๋์ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ ๊ฒฐ๊ณผ๋ฅผ ๊ณ ๋ คํ์ ๋, ์ฌ๋ฌธ์ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ ๋ค์ด์ต์ฌ์ด๋๋ก๋ถํฐ ์ฌ๋ฌธ์์ด topotactic growth๋ก ๋ง๋ค์ด์ง ๋ ํ์ฑ๋ ์ ์์์ ๋ฐํ๋๋ค. ๋ค์ด์ต์ฌ์ด๋์ (100)๊ทน์ด ์ฝ๋ฆฌ์ ์์งํ ๊ฐํ ๋ฐฐ์ด์ ๋ณด์ด๋ ๊ฒ์ ์ด์ ์ ๋ณด๊ณ ๋ ์ ์ด ์๋ ์๋ก์ด ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ผ๋ก, ์ด๋ ์ฌ๋ฌธ์์ (001)๋ฉด์ด ์ฝ๋ฆฌ์ ๋๋ํ๊ฒ ๋ฐฐ์ดํ๋ ๋์ -์ฌ๋ฌธํ์์ฉ ๋์์ ํจ๊ป ํ์ฑ๋์์ ๊ฒ์ผ๋ก ๋ณด์ธ๋ค. ๋ณธ ์ฐ๊ตฌ์์ ์ป์ ์ฌ๋ฌธ์์ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ ์ญ์
๋์์ ํด๊ตฌ์ ํํํ Sํ ์ด๋ฐฉ์ฑ์ ์ผ๊ธฐํ ์ ์๋ ์ค์ํ ์์ธ์์ ์ง์ํ๋ค. ์ข
ํฉํ์๋ฉด, ํ์, ๊ฒฝ๋
น๋์, ์ฌ๋ฌธ์๊ณผ ๊ฐ์ ํจ์๊ด๋ฌผ๋ค์ ๊ฐํ ๊ฒฐ์ ์ ํธ๋ฐฉํฅ์ ์ญ์
๋์์ ๊ด์ธก๋๋ ๊ฐํ ์ง์งํ ์ด๋ฐฉ์ฑ์ ํด์ํ๋ ๋ฐ์ ํฌ๊ฒ ๊ธฐ์ฌํ ์ ์์์ ์์ฌํ๋ค.CHAPTER 1. Introduction 1
CHAPTER 2. Crystallographic preferred orientation of talc and implications for seismic anisotropy in subduction zones 5
Abstract 5
2.1 Introduction 7
2.2 Materials and Method 9
2.2.1 Geological settings of rock specimens and sample description 9
2.2.2 Measurement of CPOs of minerals 15
2.2.3 Calculation of seismic anisotropy of polycrystalline talc 16
2.3 Results 18
2.3.1 CPO of talc and other minerals 22
2.3.2 Seismic anisotropy of polycrystalline talc and whole rock 29
2.4 Discussion 38
2.4.1 CPO development of talc 38
2.4.2 Implication of talc CPO to the P-wave seismic anisotropy in subduction zones 40
2.4.3 Implication of talc CPO to the S-wave seismic anisotropy in subduction zones 43
2.5 Conclusion 49
CHAPTER 3. Seismic anisotropy in subduction zones: evaluating the role of chloritoid 50
Abstract 50
3.1 Introduction 52
3.2 Materials and Method 54
3.2.1 Rock samples 54
3.2.2 Measurement of the CPO 55
3.2.3 Elasticity of single-crystal chloritoid 58
3.2.4 Calculation of the seismic velocity and anisotropy 61
3.2.5 Calculation of the thermodynamic stability and modal abundance of chloritoid 65
3.3 Results 72
3.3.1 CPOs of chloritoid 72
3.3.2 Elastic constant and seismic anisotropy of chloritoid 74
3.3.3 Thermodynamic stability and modal abundance of chloritoid 79
3.4 Discussion 80
3.4.1 CPO development of chloritoid 80
3.4.2 Chloritoid stability and its implication for seismic anisotropy in subduction zones 82
3.4.3 Effect of chloritoid CPO on seismic anisotropy of the Grt-Cld-Tlc schist 87
3.4.4 Effect of hydrous minerals in blueschist-facies rock on seismic anisotropy 92
3.5 Conclusion 98
CHAPTER 4. Deformation fabrics of diopside and antigorite in serpentinites and implications for seismic anisotropy in subduction zones 99
Abstract 99
4.1. Introduction 101
4.2. Geological setting and sample description 103
4.3. Method 113
4.3.1. Analysis of chemical composition of minerals 113
4.3.2. P-T pseudosection of sample 113
4.3.3. Determination of foliation, lineation, and grain sizes 114
4.3.4. Measurement of CPO 114
4.3.5. Calculation of misorientations 115
4.3.6. Calculation of seismic velocities and anisotropies 116
4.4. Results 117
4.4.1. Mineral chemistry 117
4.4.2. Pressure-temperature estimates 117
4.4.3. Microstructures of antigorite and diopside 120
4.4.4. CPO of antigorite and diopside 128
4.4.5. Misorientations of diopside and antigorite 132
4.4.6. Seismic velocities and anisotropies of diopside and antigorite 136
4.5. Discussion 145
4.5.1. Serpentinization and grain size of diopside 145
4.5.2. Relationship between diopside CPO and antigorite CPO 146
4.5.3. Deformation mechanism of diopside and antigorite 150
4.5.4. Serpentinization and stability field of the samples in MSP area 160
4.5.5. Implications of diopside and antigorite for seismic anisotropy in subduction zones 161
4.6. Conclusions 167
CHAPTER 5. Summary and conclusion 168
REFERENCES 170
๊ตญ๋ฌธ ์ด๋ก 199๋ฐ
ํฐํ์ฐ ๋ฐ๋ฅจ ๋จ๊ฒฐ์ ์ฑ์ฅ์ ๋ฏธ์น๋ ๊ณ๋ฉด ๊ตฌ์กฐ์ ์ํฅ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :๋ฌด๊ธฐ์ฌ๋ฃ๊ณตํ๊ณผ,2000.Maste
Reconsidering the Critical Legacy of the Avant-Garde Theater in the Sixties: Validity of Realistic Interpretation of Sam Shepard's Early One-Act Plays
This paper proposes a realistic interpretation of Sam Shepard's early one-act plays, considering their pronounced theatricality both as reflection and problematization of increasing theatricalization of contemporary everyday life. This interpretation challenges the dominant view that his early plays embody the liberating aesthetics absorbed from the american avant-garde theater movement in the sixties. The essential idea of this movement is epitomized in its strong valorization of performance. Performance. which used to be understood as faithful staging of plays, became autonomous theatrical activity free from (or opposing to) restricting literary text and was celebrated for anticipating social trans formation. This paper does not deny the strong influence on Sam Shepard of the innovative ideas and techniques developed by various performance-oriented theater groups. However. what. he dramatized by employing them is far from the ideal of performance envisioned by the avant-garde theater practitioners. Rather, his radically theatrical plays seem to implicitly criticize increasing performance impulses which the modern, urban life encourages, There has rarely been this kind of critical efforts which relate Shepard's innovative theatrics to critical realism. Anti - realism, which Gerald Graff attributes to the counter-cultural sensibility, the legacy of the cultural revolution in the sixties including the avant-garde theater movement, currently seems to dominate our critical thoughts, This paper aspires to provide an opportunity to reconsider this anti - realistic critical paradigm in general together with the dominant critical views of Shepard informed by it
๋์ยทํ๊ฒฝ ๋ฏธ๋์ ๋ต๊ณผ์ ํ ๋ก ๋ ธํธ : ์ 14์ฃผ์ โ ์ ์๋ก์ด ์ฌํ, ์ ์๋ก์ด ๋์
2016๋
4์ 7์ผ (์คํํน๊ฐ)
์ฃผ์ ๋ฐํ : ์ด์ ์ (์์ธ๋ํ๊ต ๋ช
์๊ต์),
21์ธ๊ธฐ ์๋๋ถํ๋ฑ๊ณผ ์ฌํ์ ์
์ง ํ : ๊น๊ด์ค (์์ธ๋ํ๊ต ๊ต์, ๋์ํ๊ฒฝ ๋ฏธ๋์ ๋ต๊ณผ์ ์ฃผ์๊ต์)์๋์ ํ๋ฆ๊ณผ ์ฌํ์ ์ ๋ฌธ์ : ์ 2์ฐจ ์ธ๊ณ๋์ ์ดํ๋ถํฐ 1980๋
๋ ์ ์์ ์ฃผ์ ๋ฐ๋์ด ๋ถ๊ธฐ ์ ๊น์ง 1945-1979๋
์ฌ์ด์ ์๊ธฐ๋ ์ ์ง๊ตญ ์๋ณธ์ฃผ์์ ํฉ๊ธ๊ธฐ์๋ค. ๋ถ์ ์ธต์ ๋ํ ์ธ๊ธ์ด ์ญ์ฌ์ ๊ฐ์ฅ ๋์๊ณ , ์ ๋ถ์ ์ฌํ๋ณต์ง ์ง์ถ ๊ท๋ชจ ์ญ์ ์ญ์ฌ์ ๊ฐ์ฅ ์ปธ๋ ์ด ์๋์ ์ ์ง๊ตญ๋ค์ ์ต๊ณ ๋ก ๋์ ๊ฒฝ์ ์ฑ์ฅ๋ฅ ์ ๊ตฌ๊ฐํ์๊ณ , ์๋ ๋ถํ๋ฑ์ ์ ๋๊ฐ ์ญ์ฌ์ ๊ฐ์ฅ ๋ฎ์์ผ๋ฉฐ, ๋๊ตฌ๋ ์ด์ฌํ ์ผํ๋ฉด ๋ถ์๊ฐ ๋๊ณ , ๊ณ์ธต์์น์ ๊ธฐํ๊ฐ ํญ๋๊ฒ ์ด๋ ค ์์๋ค. ์๋ณธ์ฃผ์ ์ญ์ฌ์์ ์ด์ ๊ฐ์ด ๊ณ ๋์ฑ์ฅ, ๋ฎ์ ์๋๋ถํ๋ฑ, ๊ธฐํ์ ํ๋ฑ์ด๋ผ๋ ์ธ ๊ฐ์ง ์กฐ๊ฑด์ด ๊ฒน์น ์๊ธฐ๋ ์ด ๋ ๋ฟ์ด๋ค. ํ๊ตญ์ ๊ฒฝ์ฐ 1970-90๋
๋๊ฐ ์ด ์๊ธฐ์ ํด๋นํ๋ค๊ณ ๋ณผ ์ ์๋ค. ๊ทธ๋ฌ๋ 2008๋
์ธ๊ณ๊ฒฝ์ ์๊ธฐ ์ดํ ๊ทน์ฌํ ๊ฒฝ๊ธฐ์นจ์ฒด์ ์๋๋ถํ๋ฑ์ ์ฌํ๊ฐ ์ ์ธ๊ณ์ ์ผ๋ก ๋ํ๋๊ณ ์๋ค. ์ ์ง๊ตญ๋ค์ด ์ด์ ๊ธ๋ฆฌ, ์์ ์ํ ๋ฑ์ ์ ์ฑ
์ผ๋ก ๋์ฒํ์ง๋ง ํด๊ฒฐ์ ๊ธฐ๋ฏธ๋ ์์ง ๋ณด์ด์ง ์๋๋ค. ์ฐ๋ฆฌ๋๋ผ๋ ์ ์ฑ์ฅ, ๋์ ์ค์
๋ฅ , ๊ทธ๋ฆฌ๊ณ ์ฌํ ์๋๋ถํ๋ฑ์ ๋ฌธ์ ์ ์๋ฌ๋ฆฌ๊ณ ์๋ค. ์ฒ ํ์ ์คํ์ค ๊ต์๋ ์ฐ๋ฆฌ๋๋ผ๋ฅผ ์ธํ์ฌํ๋ผ๊ณ ํํํ๊ณ ์๋ค. ์ฐ๋ฆฌ ์ฌํ์ ๋ง์ฐํ ๋ถ๊ณต์ ๊ณผ ๋ถ๋นํ ๋์ฐ์ ๋ํ ๊ตญ๋ฏผ์ ๋ถ๋ง๊ณผ ๋ถ๋
ธ๊ฐ ์์ด๊ณ ์๋ค๋ ๊ฒ์ด๋ค
Synthesis of porphyrin building blocks for a linker and electrical properties of the porphyrin-au NPs film
Thesis(master`s)--์์ธ๋ํ๊ต ๋ํ์ :ํํ์๋ฌผ๊ณตํ๋ถ,2006.Maste
ํ๊ฒฝ์ํฅ๋ถ์์ ์ํ ๋๋ ธ๋ฌผ์ง์ ์ธํฌ ๋ฐ ๋จ๋ฐฑ์ง ๊ฐ์ ์ํธ์์ฉ ์ฐ๊ตฌ
Thesis(doctors) --์์ธ๋ํ๊ต ๋ํ์ :ํํ์๋ฌผ๊ณตํ๋ถ,2010.2.Docto
๋ง์ทจ ์ ๋์ค ๋น๊ฐ์ ํตํ ์ฐ์ํฌ์ฌ๊ฐ ๋ฌดํธํก์ ๋๋งฅํ ์ฐ์๋ถ์ ๋ฐ ์ด์ฐํํ์ ๋ถ์์ ๋ฏธ์น๋ ์ํฅ์ ๊ดํ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ๋ํ์ :์ํ๊ณผ ๋ง์ทจ๊ณผํ์ ๊ณต,1995.Maste
์ธํฐ๋ท ๊ธฐ๋ฐ์ ํด์๊ตํต๊ด์ ์ฌ ํ๋ จ์ฉ ์๋ฎฌ๋ ์ด์ ์์คํ ๊ฐ์ ์ ๊ดํ ์ฐ๊ตฌ
Many countries have operated Vessel Traffic Service(VTS) to prevent marine casualties and oil spills which may cause the loss of human lives, properties and marine pollution in their coastal waters. VTS has been known as a service implemented by a competent authority, designed to improve the safety and efficiency of vessel traffic and to protect the environment. In order to provide services effectively, operators in VTS center should have the capability to interact with the traffic and to respond to traffic situations developing in the jurisdiction area of waters.
Under the consideration of the fact that consistent, quality training of VTS operator is very important to ensure the effective ness of the ser vice provided, International Association of Marine Aids to Navigation and Lighthouse Authorities(IALA) published a Recommendation in nineteen ninety-eight that VTS Authorities be provided with sufficient staff, appropriately qualified, suitably trained and capable of performing the tasks required. IALA also published a Guideline on the use of simulator to make the training be effective.
Based on these Recommendation and Guideline from IALA, an instruction about the training and qualification of VTS operators was made by Korean VTS authority. The model courses for the training were also developed by taking into account the previous training and experience of VTS operator, and the simulator were equipped at the Korea Institute of Maritime and Fisheries Technology(KIMFT) to deal with the relevant Training.
In spite of the fact in Korea that the procedures and contents of the training of VTS operators have been good under way, the simulator has not been enough to make training fully satisfactory because of several signs of improvement. Those signs include that the simulator has inaccurate method for calculating ship's movement and that it is in the place inconvenient for training.
In this paper, a simulator was proposed to make up for the weak points in the current simulator. The proposed simulator adopts mathematical model for calculating ship's movement which heightens the effect of training with simulator. And also it could be used through the Internet so as to make long-distance training possible without visiting the KIMFT. It could be expected by using the proposed simulator that the effectiveness and convenience of the training with simulator would be improved.์ 1์ฅ ์ ๋ก
์ 2์ฅ ํด์๊ตํต๊ด์ ์ฌ ํ๋ จ์ ๊ตญ์ ๊ธฐ์ค ๋ฐ ๊ตญ๋ด ํํฉ
์ 3์ฅ ๊ตญ์ ๊ธฐ์ค๊ณผ ๊ตญ๋ด ํํฉ์ ๋น๊ต ๋ถ์
์ 4์ฅ ํ๋ จ์ฉ ์๋ฎฌ๋ ์ด์
์์คํ
๊ฐ์ ์ ๊ดํ ์ค๊ณ ๋ฐ ๊ตฌํ
์ 5์ฅ ๊ฒฐ
์ด๋ํต์ ์์ฅ์์์ ๋ฒํธ์ด๋์ฑ ๋์ ๋ฐฉ์ ์ฐ๊ตฌ
ํ์๋
ผ๋ฌธ(์์ฌ)--์์ธ๋ํ๊ต ํ์ ๋ํ์ :ํ์ ํ๊ณผ ์ ์ฑ
ํ์ ๊ณต,2002.Maste