3 research outputs found

    Zur รœberlebensstratgie des Theaters im Zeitalter der Massenkultur

    No full text
    Ziel der vorliegenden Arbeit ist es, aufzuzeigen, was fรผr eine Rolle die Aufnahme und Verarbeitung der Massenkultur bei der Aktualisierung des Theaters รผbernehmen kann. Zu diesem Zweck soll hier die Theatertopographie der Weimarer Republik berรผcksichtigt werden. Bekanntlicherweise wird in der genannten Periode von der Krise des Theaters viel gesprochen, einer Krise, die zwanglรคufig zu heftigen Auseinandersetzungen fรผhrte: diese Krise wiesen die traditionellen Eliten der korrupten Zeitatmosphรคre entschieden zu und zogen sich somit in den Kulturelitismus zurรผck. Die Expressionisten hingegen bemรผhten sich zur รœberwindung der Krisensituation ernsthaft. Jedoch konnten sie sich nicht durchsetzen und scheiterten an der von der Massenkultur รผberwuchterten Wirklichkeit. Bertolt Brecht aber versuchte mit Rรผcksicht auf die massenkuturelle Tendenz die Krise des Theaters zu รผberwinden. Ausgehend davon, dass Kultur nichts anderes als ein historisches Produkt darstellt, erkannte der Stรผckeschreiber die Existenz der Massenkultur an und trachtete diese fรผr seine Theaterรคsthetik zu verwenden, was ihm schlieฮฒlich einen groฮฒen Erfolg erntete: Brechts Theaterkonzept gewann somit die Existenzgrundlage im Zeitalter der Massenkultur

    ์—ญ์ œ๋™ ํก์ˆ˜์‹ ๋ ˆ์ด์ € ํŽ„์Šค ํญ ๋ณ€์กฐ๋ฅผ ์‚ฌ์šฉํ•œ ๋ ˆ์ด์ € ์œ ๋„ ํ”Œ๋ผ์Šค๋งˆ ๋ถ„๊ด‘๋ฒ•์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021. 2. ๋„ํ˜•๋ก.Laser-induced breakdown spectroscopy (LIBS) is a quantitative optical measurement method providing composition and density information within nanoseconds (ns) timescale. Compared to other laser-based measurement techniques, LIBS requires a simpler optical setup, single optical access window, and lower input laser energy, but provides better signal strength. The LIBS signal is based on light-emission from plasma created by an optical breakdown at the measurement target. Optical breakdown in neutral dielectric gas accompanies rapid electron production through photon-molecule, photon-electron, and electron-molecule interactions, which results in high electron number density above a critical value. Subsequently, the seed electrons rapidly absorb optical energy in the inverse-Bremsstrahlung (IB) process. For non-intrusive LIBS measurements, however, the IB process should be limited; thus, the laser pulse width needs to be reduced below a certain value. In general, the pulse width of high-power lasers capable of inducing plasma breakdown is not variable, and the ns-laser system is commonly used for LIBS measurements. Therefore, applications of LIBS have been limited, for example, to the fuel mixtures outside the explosive and flammable range, or in post-reaction products. In this study, a newly devised laser pulse control technique is developed to provide sub-ns pulses of the proper pulse width. The laser pulse generated from a commercially available ns-laser source is focused into a pressure cell to induce gas breakdown. Prior to the breakdown at the cell, air at the focus is perfectly transparent to the laser beam. However, the intense IB photon absorption suddenly makes the medium opaque, acting as a virtual shutter. It is shown that the shutter time is controllable primarily by the cell pressure. Similarly, by increasing the number of photons passing through the focal volume the breakdown delay can be adjusted to close the shutter earlier. In this work, a correlation of the โ€œclosing timeโ€ dependence is established and verified with experimental results. The laser pulse control technique is applied to develop a non-intrusive LIBS measurement. In conventional LIBS, the IB-induced gas heating causes unwanted disturbances to the measurement target by inducing initiation and/or amplification of chemical reactions, pressure waves, and rapid temperature rise; and in this respect the LIBS measurement is intrusive. Nevertheless, LIBS also require sufficiently strong plasma emission for quantitative measurements. Thus, the laser pulse-width modulation technique is applied to generate a sub-ns pulse, which can induce gas breakdown stably while providing a sufficiently strong emission signal. The result showed that while the IB process can effectively raise the signal strength, the IB process can be limited by reducing the laser pulse duration. Additionally, the new LIBS diagnostic offers higher SNR compared to conventional methods with improved spatiotemporal resolution. The feasibility of the proposed minimally-intrusive LIBS technique is demonstrated in a highly flammable environment. The potential for cold-gas probing is proven with measurements (i.e., not causing ignition) of highly-flammable flow. The modulated pulses are used for LIBS, and the 2D concentration distribution of a stoichiometric laminar methane-air flow in ambient air is recorded.๋ ˆ์ด์ € ์œ ๋„ ํ”Œ๋ผ์Šค๋งˆ ๋ถ„๊ด‘๋ฒ•(LIBS)์€ ๋‚˜๋…ธ์ดˆ(ns) ์‹œ๊ฐ„ ๋ฒ”์œ„์—์„œ ์œ ์ฒด์˜ ๋ฐ€๋„ ๋ฐ ํ™”ํ•™์  ๊ตฌ์„ฑ ์ •๋ณด๋ฅผ ์ธก์ •ํ•˜๋Š” ๊ด‘ํ•™ ์œ ๋™ ๊ณ„์ธก ๋ฐฉ๋ฒ•์ด๋‹ค. LIBS์˜ ๊ณ„์ธก ์‹ ํ˜ธ๋Š” ์ธก์ • ์ง€์ ์—์„œ ๋ ˆ์ด์ € ๊ด‘๋ถ„ํ•ด๋กœ ์ƒ์„ฑ๋œ ๊ณ ์˜จ ํ”Œ๋ผ์Šค๋งˆ์˜ ์ž๊ฐ€ ๋น› ๋ฐฉ์ถœ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ๋‹ค. ํ”Œ๋ผ์Šค๋งˆ๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ์ค‘์„ฑ ์œ ์ „์ฒด ๊ฐ€์Šค์˜ ๊ด‘๋ถ„ํ•ด๋Š” ๊ด‘์ž-๋ถ„์ž, ๊ด‘์ž-์ „์ž ๋ฐ ์ „์ž-๋ถ„์ž ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ฑฐ์ณ ์ด๋ฃจ์–ด์ง„๋‹ค. ํŠน์ • ์‹œ์ ๋ถ€ํ„ฐ ์ „์ž๋Š” ์—ญ์ œ๋™ (inverse-Bremsstrahlung) ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ํ”Œ๋ผ์Šค๋งˆ ์—๋„ˆ์ง€ ํก์ˆ˜๋ฅผ ์ฆํญ์‹œํ‚ค์ง€๋งŒ, ๊ณ„์ธก ๋Œ€์ƒ ์œ ๋™์— ๊ฐ„์„ญ์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ•ด๋‹นํ•˜๋Š” ์—ญ์ œ๋™ ๊ด‘ํก์ˆ˜์˜ ์‹œ์ ๊ณผ ๊ฐ•๋„๊ฐ€ ์ ์ ˆํžˆ ์ œํ•œ๋˜์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ด‘์ž-๋ฌผ์งˆ ์ƒํ˜ธ์ž‘์šฉ์„ ์ œ์–ดํ•˜๋Š” ์ƒˆ๋กœ์šด ๊ธฐ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์—ฌ ์œ ๋™ ๊ฐ„์„ญ์„ ์ตœ์†Œํ™”ํ•˜๋Š” LIBS ๊ธฐ์ˆ ์— ์‘์šฉํ•œ๋‹ค. ์—ญ์ œ๋™ ๊ด‘ํก์ˆ˜ ํšจ๊ณผ๋Š” ๋ ˆ์ด์ € ํŽ„์Šค ํญ๊ณผ ๋ฐ€์ ‘ํ•œ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์žˆ์ง€๋งŒ, ์ผ๋ฐ˜์ ์ธ ๊ณ ์ถœ๋ ฅ ๋ ˆ์ด์ €์˜ ํŽ„์Šค ํญ์€ ๊ฐ€๋ณ€์ ์ด์ง€ ์•Š๋‹ค. ๋‚˜๋…ธ์ดˆ ๋ ˆ์ด์ € ํŽ„์Šค๋Š” ๊ฐ€์Šค์— ์ง‘๊ด‘ ์‹œ ๊ณผ๋„ํ•œ ์—ญ์ œ๋™ ํšจ๊ณผ๋ฅผ ์ˆ˜๋ฐ˜ํ•˜์—ฌ, ์œ ๋™์— ์›์น˜ ์•Š๋Š” ๊ฐ„์„ญ(์ถฉ๊ฒฉํŒŒ ๋“ฑ)์„ ์ผ์œผํ‚ค๊ธฐ๋„ ํ•œ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‚˜๋…ธ์ดˆ ๋ ˆ์ด์ € ํŽ„์Šค๋ฅผ ์ œ์–ดํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ ˆ์ด์ € ํŽ„์Šค ๋ณ€์กฐ ๊ธฐ์ˆ ์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ํŽ„์Šค ์ œ์–ด ์žฅ์น˜๋Š” ๋ ˆ์ด์ € ๊ณต์ง„๊ธฐ ์™ธ๋ถ€์— ์„ค์น˜๋œ ๊ฐ€๋ณ€ ์••๋ ฅ ์ฑ”๋ฒ„์ด๋ฉฐ, ์ž…๋ ฅ ๋ ˆ์ด์ € ํŽ„์Šค๋Š” ์ฑ”๋ฒ„ ๋‚ด๋ถ€ ๊ฐ€์Šค ํŒŒ๊ดด๋ฅผ ์œ ๋„ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์•• ์ง‘๊ด‘ ๋œ๋‹ค. ์—ญ์ œ๋™ ๊ด‘ํก์ˆ˜์— ์˜ํ•˜์—ฌ ์ถœ๋ ฅ ๋ ˆ์ด์ € ํŽ„์Šค์˜ ์‹œ๊ฐ„์  ํ›„๋‹จ์€ ํก์ˆ˜๋˜์ง€๋งŒ, ์ „๋‹จ์€ ํ”Œ๋ผ์Šค๋งˆ์˜ ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š๊ณ  ์ˆœ์ˆ˜ํ•˜๊ฒŒ ํˆฌ๊ณผ๋œ๋‹ค. ์ฆ‰, ์ดˆ์  ๋ถ€ ๊ด‘๋ถ„ํ•ด์‹œ ๊ด€์ธก๋˜๋Š” ๊ฐ•๋ ฌํ•œ ๊ด‘ํก์ˆ˜๋Š” ์ˆœ๊ฐ„์ ์œผ๋กœ ์ดˆ์  ๋งค์งˆ์„ ๋ถˆํˆฌ๋ช…ํ•˜๊ฒŒ ํ•˜์—ฌ ๋ ˆ์ด์ € ๋น”์„ ์ฐจ๋‹จํ•˜๋Š” ๊ฐ€์ƒ์  ์…”ํ„ฐ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€๋ณ€ ์…”ํ„ฐ๋ง ์‹œ๊ฐ„์€ ์…€ ์••๋ ฅ๊ณผ ๋ ˆ์ด์ € ์„ธ๊ธฐ๋ฅผ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ์ œ์–ด๋˜์—ˆ์œผ๋ฉฐ, "๋ ˆ์ด์ € ์…”ํ„ฐ๋ง ์‹œ๊ฐ„" ์˜์กด์„ฑ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ํ™•๋ฆฝํ•˜์˜€๋‹ค. ์ข…๋ž˜์˜ LIBS ๊ณ„์ธก์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํ•„์š”ํ•œ ํ”Œ๋ผ์Šค๋งˆ๋Š” ์ธก์ • ๋Œ€์ƒ ๋‚ด์— ํ™”ํ•™ ๋ฐ˜์‘ ์ฆํญ, ์ถฉ๊ฒฉํŒŒ, ๊ธ‰๊ฒฉํ•œ ์˜จ๋„ ์ƒ์Šน ๋“ฑ์„ ์ˆ˜๋ฐ˜ํ•˜๊ธฐ์— ํ•œ์ •์ ์ธ ํ™˜๊ฒฝ์—์„œ๋งŒ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœํ•œ ํŽ„์Šค ํญ ๋ณ€์กฐ ๊ธฐ์ˆ ์€ ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๋›ฐ์–ด๋„˜๋Š” ์ตœ์†Œ ์นจ์Šต์  LIBS๋ฅผ ๊ฐœ๋ฐœํ•˜๋Š”๋ฐ ์‘์šฉ๋˜์—ˆ๋‹ค. ์•ž์„œ ๊ฐœ๋ฐœ๋œ ํŽ„์Šค ํญ ๋ณ€์กฐ ๊ธฐ์ˆ ์„ LIBS ๊ณ„์ธก์— ์ ์šฉํ•˜์—ฌ (1) ๊ฐ€์Šค ๋ถ„ํ•ด ๋ฐ ํ”Œ๋ผ์Šค๋งˆ ์ƒ์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ์œ ๋„ํ•˜๋ฉด์„œ (2) ๋™์‹œ์— ์œ ๋™ ๊ฐ„์„ญ์„ ์–ต์ œํ•˜๋Š” ์•ˆ์ •์ ์ธ LIBS ์ธก์ •์ด ๊ฐ€๋Šฅํ•จ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๋”์šฑ์ด, ์ œ์•ˆํ•œ LIBS ์ธก์ • ๋ฐฉ์‹์€ ๊ธฐ์กด ๋ฐฉ์‹์— ๋น„ํ•ด ํ–ฅ์ƒ๋œ ์‹œ๊ณต๊ฐ„ ๋ถ„ํ•ด๋Šฅ์„ ์ œ๊ณตํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœํ•œ ์ตœ์†Œ ์นจ์Šต์  LIBS ๊ธฐ์ˆ ์„ ๊ฐ€์—ฐ์„ฑ์ด ๋งค์šฐ ๋†’์€ ์œ ๋™ ํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰ํ•˜์—ฌ ์—ฐ๊ตฌ์˜ ๊ฐ€๋Šฅ์„ฑ ๋ฐ ์‹คํšจ์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ์ž…์ฆํ•˜์˜€๋‹ค. ์—ญ์ œ๋™ ํก์ˆ˜์‹ ์ œ์–ด๋ฅผ ํ†ตํ•ด ์ƒ์„ฑ๋œ ํ”ผ์ฝ”์ดˆ ๋ ˆ์ด์ € ํŽ„์Šค๋Š” LIBS ์ธก์ •์— ์‚ฌ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด ๊ฐ€์—ฐ์„ฑ ์œ ๋™์˜ 1, 2์ฐจ์› ์—ฐ๋ฃŒ ๋†๋„ ๋ถ„ํฌ๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์ธก์ •๋˜์—ˆ๋‹ค.Abstract i Contents iv List of Figures vi List of Tables x Nomenclature xi Acknowledgment of Copyright 1 Chapter 1 Introduction 3 1.1 Background & Motivation 3 1.2 Literature Review 5 1.3 Objectives & Outline of the Dissertation 8 Chapter 2 Laser pulse-width modulation 10 2.1 Theory of inverse-Bremsstrahlung (IB) photon absorption 10 2.2 Photon absorption delay 13 2.3 Experimental setup 20 2.4 Pulse-width modulation 22 2.4.1 Experimental result 22 2.4.2 Performance 27 Chapter 3 Light emission from plasma 33 3.1 Theory of plasma emission 33 3.2 Visualization 36 3.2.1 Laser irradiation period 38 3.2.2 Post-breakdown period 41 3.3 Spectral analysis 42 3.3.1 Air plasma spectrum 42 3.3.2 Plasma temperature 44 Chapter 4 Development of non-intrusive LIBS 47 4.1 Overview of LIBS measurement 47 4.2 Experimental setup 49 4.2.1 Absorption measurement setup 49 4.2.2 Spectrum measurement setup 50 4.3 No-ignition by plasma 58 4.4 Plasma spectrum 62 4.4.1 Experimental result 62 4.4.2 Performance 67 Chapter 5 Demonstration of non-intrusive LIBS 75 5.1 Development of a flat-flame burner 75 5.2 Burner testing 82 5.2.1 Flame chemiluminescence 82 5.2.2 Operation at various fuel concentration 84 5.3 Result & Discussion 91 5.3.1 Experimental result 91 5.3.2 Comparison to conventional LIBS 97 5.3.3 Comparison to different laser diagnostics 99 5.4 Pressure effect on plasma dynamic 102 Chapter 6 Conclusion 105 Bibliography 107 ๊ตญ ๋ฌธ ์ดˆ ๋ก 118Docto
    corecore