121 research outputs found
Analysis of Impacts of the supplementary schemes on the drug reimbursement decision-making under the Positive List System
νμλ
Όλ¬Έ (μμ¬)-- μμΈλνκ΅ λνμ : 보건λνμ 보건νκ³Ό(보건μ μ±
κ΄λ¦¬νμ 곡), 2018. 8. μ΄νμ§.2006λ
12μ 29μΌ κΈ°μ‘΄μ κΈμ¬λͺ©λ‘μ μΈμ λ(Negative List System)κ° μμ΄μ§κ³ , μ λ³λ±μ¬μ λ(Positive List System)κ° λμ
λ μ§ μ½ 11λ
μ΄ μ§λ¬λ€. μ λ³λ±μ¬μ λλ κΈ°μ‘΄κ³Ό κ°μ΄ λͺ¨λ μμ½νμ κΈμ¬λͺ©λ‘μ λ±μ¬νλ κ²μ΄ μλλΌ, μμμ μ μ©μ± λ° λΉμ©ν¨κ³Όμ±μ λ§μ‘±νλ μμ½νλ§ κΈμ¬λͺ©λ‘μ λ±μ¬μν€λ μ λμ΄λ€. κ·Έλ¬λ€ 보λ μ λκ° μνλλ©΄μ μμ΄λ ν¬κ·μ§ν κ°μ΄ μΉλ£μ½μ κ° μ νμ μΈ μμμμ λμμμ΄ μ μ½μ μ κ·Όμ± κ°νλ₯Ό μꡬνλ λͺ©μλ¦¬κ° μμλ€.
μ λΆμμλ μ΄λ¬ν μ¬νμ μꡬλ₯Ό κ³ λ €νμ¬ μ λ³λ±μ¬μ λ λμ
ν νμμ λ° ν¬κ·μ§ν μΉλ£μ μ μ κ·Όμ±μ κ°ννλ μΈλΆ μ λλ₯Ό λͺ μ°¨λ‘ μΆκ°μ μΌλ‘ λμ
νμλ€. μ¬λ¬ μ νμ°κ΅¬λ€μμλ νμΈν μ μλ―μ΄ μκ°μ΄ μ§λ¨μ λ°λΌ νμμ λ° ν¬κ·μ§ν μΉλ£μ μ κΈμ¬μ¨μ μμΉνκ³ μλ€. κ·ΈλΌμλ λΆκ΅¬νκ³ μ¬μ ν λ―ΈμΆ©μ‘± μλ£μ ν΄κ²°μ΄ μꡬλλ μ¬κ°μ§λκ° μ‘΄μ¬νκ³ , ν΄λΉ μ§νμ κ²ͺκ³ μλ νμλ€μ 보μ₯μ± κ°νμ νλλ₯Ό μꡬνκ³ μλ€. κ²°κ΅ μ μ λΆμμλ μ§λ©΄ν μν©μ ν΄κ²°νκΈ° μνμ¬ λΉκΈμ¬μ μ λ©΄ κΈμ¬νλ₯Ό μΆμ§νκΈ°μ μ΄λ₯΄λ λ€. μ½μ μ κΈμ¬μ κ΄λ ¨ν΄μλ μΌλͺ
μ λ±μ¬ ννκ° μ λμ λμ
μ κ³ λ €μ€μΈλ°, μ΄λ μμμ μ μ©μ±μ λ¨Όμ κ²ν νμ¬ κΈμ¬λͺ©λ‘μ λ±μ¬νκ³ , λ±μ¬ ν λΉμ©ν¨κ³Όμ±μ νλ¨νλ€λ κ²μ΄λ€.
μ λ±μ¬ ννκ°λ‘ λνλλ λΉκΈμ¬μ μ λ©΄ κΈμ¬ν μ λλ μ§κΈκΉμ§ μνλμ΄ μλ μ λ³λ±μ¬μ λμ κ·Όκ°μ νλ€ κ°λ₯μ±μ΄ μμ΄ μ¬νμ μΌλ‘ λ§μ λ
Όμκ° νμν λ¬Έμ μ΄κ³ , νμ¬ μ¬λ¬ μ΄ν΄λΉμ¬μλ€μ΄ μμμ κ³Όμ μ κ±°μΉκ³ μλ€.
λ³Έ μ°κ΅¬λ μ΄λ¬ν μ¬νμ λ
Όμμ κ²½κ³μμ μ λ³λ±μ¬μ λ μν ν νμμ λ° ν¬κ·μ§ν μΉλ£μ μ 보μ₯μ± κ°νλ₯Ό μνμ¬ λμ
λ μΈλΆ μ λκ° μ€μ§μ μΌλ‘ ν¨κ³Όλ₯Ό λ―Έμ³€λμ§ νκ°ν΄λ³΄κ³ μ νμλ€. κΈ°μ‘΄μλ μ μ½μ κΈμ¬μ¬λΆμ κ°κ΄μ μΌλ‘ μΈλΆ μ μ±
μ΄ λ―ΈμΉλ μν₯μ νκ°ν μ°κ΅¬κ° μμμ λ°λΌ, μΈλΆ μ λκ° νμμ λ° ν¬κ·μ§ν μΉλ£μ μ κΈμ¬μ¬λΆμ λ―ΈμΉλ ν¨κ³Όλ₯Ό μ΄μ€μ°¨μ΄λΆμλ²μ μ΄μ©νμ¬ λΆμνμκ³ , 보μ₯μ± νν©μ νμ
νμλ€.
λ³Έ μ°κ΅¬μμλ νμμ λ° ν¬κ·μ§ν μΉλ£μ μΈμ μμ½νμ μΌλ°μ§ν μΉλ£μ λ‘ μ μνμ¬ νμμ λ° ν¬κ·μ§ν μΉλ£μ (λμμ§λ¨)μ λΉκ΅μ§λ¨μΌλ‘ μ€μ νμλ€. λΆμλ°©λ²μ μ½μ κΈμ¬νκ°μμνμ νκ°μκΈ°λ₯Ό μΈ κ΅¬κ°(1ꡬκ°, 2ꡬκ°, 3ꡬκ°)μΌλ‘ λλμ΄ μκ°μ°¨λ₯Ό λκ³ 2νμ κ±Έμ³ λμ
λ μ λμΈ 4λ μ€μ¦μ§ν 보μ₯μ± κ°νμ μ±
λ° κ²½μ μ±νκ° νΉλ‘ μ λ κ°κ°μ ν¨κ³Όλ₯Ό νκ°νμλ€. λ€λ§, 2ꡬκ°κ³Ό 3ꡬκ°μ λΆμμμλ 2ꡬκ°μμ λμμ§λ¨κ³Ό λΉκ΅μ§λ¨μ΄ μ μ© λ°λ μ λκ° μμ ν μΌμΉνμ§ μλ μ νμ μ΄ μμ΄, 1ꡬκ°κ³Ό 2+3ꡬκ°μ λΉκ΅νλ λΆμμ μννμκ³ , λ κ°μ§ μ λκ° νΌν©λμ΄ μλ μν©μ ν΅μ νκ³ μ νκ°λ
λ λ³μλ₯Ό ν΅μ λ³μμ μΆκ°νμλ€.
λΆμ κ²°κ³Ό, 1κ΅¬κ° vs 2κ΅¬κ° λΉκ΅μμλ μκ°λ³μμ μ μ±
λ³μμ μνΈκ΅μ°¨νμ΄ ν΅κ³μ μΌλ‘ μ μνμ§ μμκ³ , 2κ΅¬κ° vs 3κ΅¬κ° λΉκ΅μμλ μνΈκ΅μ°¨νμ΄ ν΅κ³μ μΌλ‘ μ μνμλ€. μ¦, 4λ μ€μ¦μ§ν 보μ₯μ± κ°νμ μ±
μ λμμ§λ¨μ κΈμ¬μ¨ μμΉμ μν₯μ λ―ΈμΉμ§ μμκ³ , κ²½μ μ±νκ° νΉλ‘ μ λλ κΈμ¬μ¨ μμΉμ μν₯μ λ―Έμ³€λ€. κ·Έλ¬λ, λ κ°μ§ λΆμμ μΌλΆ μ νμ μ΄ μ‘΄μ¬νλ λ°, 1κ΅¬κ° vs 2+3ꡬκ°μ λΉκ΅νλ λΆμμ μνν κ²°κ³Ό, 4λ μ€μ¦μ§ν 보μ₯μ± κ°νμ μ±
λ° κ²½μ μ±νκ° νΉλ‘ μ λλ λμμ§λ¨μ κΈμ¬μ¨ μμΉμ ν΅κ³μ μΌλ‘ μ μν μν₯μ λ―Έμ³€κ³ , νΉν, κ²½μ μ±νκ° νΉλ‘ μ λκ° λμ
λ μμ μμλ λμμ§λ¨μ΄ κΈμ¬λ‘ νκ°λ νλ₯ μ΄ λμ± μ¦κ°νμλ€. λν, μΈλΆ μ λμ λμ
μΌλ‘ λμμ§λ¨μ κΈμ¬μ¨μ 1κ΅¬κ° λλΉ 3ꡬκ°μμ 2λ°° κ°κΉμ΄ μ¦κ°νμ¬ λΉκ΅μ§λ¨μ κΈμ¬μ¨λ³΄λ€ λμμ§λ κ²°κ³Όλ₯Ό λνλλ€.
λ³Έ μ°κ΅¬μ κ²°κ³Όλ₯Ό 보면 μ λ³λ±μ¬μ λ νμμμ μ μ½μ κΈμ¬μ¨, κΈμ¬μ μν₯μ λ―ΈμΉλ μμΈ, νμμ λ° ν¬κ·μ§ν μΉλ£μ μ 보μ₯μ± κ°νλ₯Ό μνμ¬ μΈλΆμ μΌλ‘ λμ
λ μ λμ ν¨κ³Όλ₯Ό νμΈν μ μλ€. μ΄λ₯Ό ν΅ν΄, νμ¬ λ
Όμλκ³ μλ λΉκΈμ¬μ μ λ©΄ κΈμ¬ν μ μ±
μ λμ
κ³Όμ μμλ λ³Έ μ°κ΅¬μ κ²°κ³Όκ° λ³΄ν¬μ΄ λ μ μμ κ²μ΄λ€.β
. μλ‘ 1
1. μ°κ΅¬μ λ°°κ²½ λ° νμμ± 1
2. μ°κ΅¬μ λͺ©μ 4
β
‘. μ΄λ‘ μ λ°°κ²½ λ° μ νμ°κ΅¬ κ³ μ°° 5
1. μ΄λ‘ μ λ°°κ²½ 5
1) μ λ³λ±μ¬μ λμ λμ
5
2) μ λ³λ±μ¬μ λμμμ κΈμ¬ μ μ μ± νκ°κ³Όμ 7
(1) μμκΈμ¬ λμμ¬λΆμ νκ°λ΄μ© λ° μ λ³κΈ°μ€ 8
(2) μ½μ μ μμκΈμ¬ λμμ¬λΆ νκ°μ μ°¨ 10
3) μ λ³λ±μ¬μ λ μν ν μΈλΆ μ λμ λμ
11
(1) 4λ μ€μ¦μ§ν 보μ₯μ± κ°ν μ μ±
11
(2) μ μ½μ μ μ κ°μΉ λ°μ μ λ 14
2. μ νμ°κ΅¬ κ³ μ°° 18
1) μ°λ¦¬λλΌ μ μ½ κΈμ¬ νν© 18
2) μ μΈκ΅μ μ μ½ κΈμ¬ νν© 20
3) μ μΈκ΅κ³Όμ κΈμ¬ μμ€ λΉκ΅ 21
4) κ΅λ΄μ νμμ λ° ν¬κ·μ§ν μΉλ£μ μ μ κ·Όμ± λ
Όλ 22
5) μ μΈκ΅μμμ νμμ λ° ν¬κ·μ§ν μΉλ£μ μ μ κ·Όμ± κ°ν μ μ±
24
β
’. μ°κ΅¬ λ°©λ² 25
1. μ°κ΅¬ λμ μ μ±
25
2. μ°κ΅¬ μλ£μ 26
3. λΆμλ°©λ² 31
1) λ¨μ μ΄μ€μ°¨μ΄λΆμ 32
2) λ€μ€ μ΄μ€μ°¨μ΄λΆμ 33
4. μ’
μλ³μ λ° μ£Όμ λ³μ 34
1) μ’
μλ³μ 34
2) λ
립λ³μ 34
3) ν΅μ λ³μ 34
β
£. μ°κ΅¬ κ²°κ³Ό 36
1. μΌλ°μ νΉμ± 36
1) μ°κ΅¬λμ μ½μ λ€μ μΌλ°μ νΉμ± 36
2) μ½νμ νκ°μκΈ°λ³ κΈμ¬μ¨ 38
2. κΈμ¬μ λ―ΈμΉλ μν₯: λ¨μ μ΄μ€μ°¨μ΄λΆμ 41
3. κΈμ¬μ λ―ΈμΉλ μν₯: λ€μ€ μ΄μ€μ°¨μ΄ νκ·λΆμ 44
1) μ£Όμλ³μλ₯Ό μ΄μ©ν λ€μ€ μ΄μ€μ°¨μ΄λΆμ 45
(1) 4λ μ€μ¦ 보μ₯μ± κ°νμ μ±
45
(2) κ²½μ μ±νκ° νΉλ‘ μ λ 46
(3) 4λ μ€μ¦ 보μ₯μ± κ°νμ μ±
+ κ²½μ μ±νκ° νΉλ‘ μ λ 47
2) μ£Όμλ³μμ ν΅μ λ³μλ₯Ό μ΄μ©ν λ€μ€ μ΄μ€μ°¨μ΄λΆμ 48
(1) 4λ μ€μ¦ 보μ₯μ± κ°νμ μ±
48
(2) κ²½μ μ±νκ° νΉλ‘ μ λ 50
(3) 4λ μ€μ¦ 보μ₯μ± κ°νμ μ±
+ κ²½μ μ±νκ° νΉλ‘ μ λ 51
β
€. κ³ μ°° 53
1. μ°κ΅¬ κ²°κ³Όμ λν κ³ μ°° 53
1) 1κ΅¬κ° vs 2κ΅¬κ° 54
2) 2κ΅¬κ° vs 3κ΅¬κ° 55
3) 1κ΅¬κ° vs 2+3κ΅¬κ° 56
2. μ°κ΅¬μ μ νμ 58
3. μ°κ΅¬μ μμ 61
μ°Έκ³ λ¬Έν 63
Abstract 67Maste
Effect of thiopental or propofol continuous infusion on serum potassium disturbance in patients with increased intracranial pressure
νμλ
Όλ¬Έ (μμ¬)-- μμΈλνκ΅ λνμ : μνκ³Ό(λ§μ·¨ν΅μ¦μνμ 곡), 2014. 2. λ°ν¬ν.Introduction: Thiopental continuous infusion is associated with hypokalemia and rebound hyperkalemia. However, the effect of propofol continuous infusion on serum potassium levels has not been investigated extensively. We retrospectively compared the effects of thiopental and propofol on serum potassium levels during continuous infusion.
Methods: We reviewed the medical records of 60 consecutive patients who received coma therapy or deep sedation for intracranial pressure control using either thiopental (n=37) or propofol (n=23) between January 2010 and January 2012.
Results: Thirty-three (89.2%) patients in the thiopental group and nineteen (82.6%) patients in the propofol group had hypokalemia (serum potassium 5.0 mmol/L) after the cessation of therapy was higher in the thiopental group than in the propofol group (32.4 vs. 4.3%p<0.05). The average peak serum potassium concentration was 4.8 Β± 1.1 and 4.2 Β± 1.1 mmol/L in the thiopental and propofol groups, respectively (p<0.05). On multivariate analysis, thiopental (8.821 [1.000-77.811]p=0.049) and duration of continuous infusion (1.021 [1.004-1.039]p=0.016) were associated with rebound hyperkalemia once therapy was discontinued.
Conclusions: When continuous infusion was used to relieve intracranial hypertension, propofol was less frequently associated with moderate to severe hypokalemia after induction and rebound hyperkalemia following the cessation of continuous infusion than thiopental.Introduction 1
Material and Methods 2
Results 5
Discussion 16
References 21
Abstract in Korean 25Maste
Extended study on energy flow analysis for ship cabin noise in the medium-to-high frequency ranges
νμλ
Όλ¬Έ(λ°μ¬) -- μμΈλνκ΅λνμ : 곡과λν μ‘°μ ν΄μ곡νκ³Ό, 2022.2. νμμ€.μλμ§νλ¦ν΄μλ²μ μ곡κ°νκ· λ μλμ§λ°λμ μΈν
μν°λ₯Ό μ΄μ©ν κΈ° λλ¬Έμ λ³μ λ° μλ ₯κΈ°λ°μ μ ν΅μ μΈ ν΄μλ²κ³Όλ λ¬λ¦¬ μ€βκ³ μ£Όνμλμ μ μ§λβμμν΄μμ μ ν©ν ν΄μλ°©λ²μ΄λ€. μλμ§νλ¦ν΄μλ²μ μ§λ°°λ°©μ μμ 2μ°¨νΈλ―ΈλΆλ°©μ μννλ₯Ό κ°μ§κΈ° λλ¬Έμ μ νμ μλ²κ³Ό κ²½κ³μμλ²κ³Ό κ°μ μμΉν΄μκΈ°λ²μ μ½κ² μ μ©ν μ μλ€. μλμ§νλ¦μ νμμλ²μ μ§λ°°λ°©μ μμ ν΄λ₯Ό μ νμμλ²μ μ΄μ©νμ¬ κ΅¬ν κ²μΌλ‘ 볡ν©κ΅¬μ‘°λ¬Όμ μ§λν΄μμ ν¨κ³Όμ μ΄λ©°, μλμ§νλ¦κ²½κ³μμλ²μ μ§λ°°λ°©μ μμ ν΄λ₯Ό κ²½κ³μμλ²μ μ΄μ©νμ¬ κ΅¬νκ²μΌλ‘ λ³΅ν© κ΅¬μ‘°λ¬Όμ μμν΄μμ ν¨κ³Όμ μ΄λ€.
λ³Έ λ
Όλ¬Έμμλ μ μ€ μμμ μ΄λ₯Ό μν΄ λ리 μ¬μ©λλ ν‘μμ¬μ λν μν₯ μλμ§νλ¦ν΄μλͺ¨λΈμ κ°λ°νμλ€. κΈ°μ‘΄μ μ‘΄μ¬νλ μ κ°μ μν₯ λ§€μ§ (곡기 λ° μμ€)μ λν μν₯ μλμ§νλ¦ν΄μλͺ¨λΈκ³Ό λ€λ₯΄κ² ν‘μμ¬μ 볡μ μν₯ λ¬Όμ±μΉλ₯Ό μ΄μ©νμ¬ κ³ κ°μ 맀μ§μ λν κ°μ κ³μλ₯Ό μλ‘κ² μ μνμμΌλ©°, μλμ§μ§λ°°λ°©μ μμ λμΆνμλ€. κ°λ°λ ν‘μμ¬ μν₯ μλμ§νλ¦ν΄μλ²κ³Ό μ νμμλ² λ° κ³μΈ‘κ° λΉκ΅λ₯Ό ν΅νμ¬ κ²μ¦ λ° ν‘μꡬ쑰물 μ μ©μ λν μ μ©μ±μ νμΈνμλ€.
곡기μ ν‘μμ¬λ‘ μ΄λ£¨μ΄μ§ λ€μΈ΅κ΅¬μ‘° μμκΈ° ν΄μ μ κ²½κ³ μλμ§ λΆμ°μλ¬Έμ ν΄κ²°μ μνμ¬ μλμ§νλ¦μ§λ°°λ°©μ μμ μ΄λ¨μΌμ²΄μ λΆμ (hypersingular integral)μ λμΆνμλ€. ν‘μμ¬ μν₯ μλμ§νλ¦λͺ¨λΈ λ° μ΄λ¨μΌμ²΄μ λΆμμ μ΄μ©νμ¬ μ λ°μ© λ΄μ₯λνΈ(lined duct) μμν΄μμ μννμμΌλ©°, κ³μΈ‘ κ°κ³Ό λΉκ΅λ₯Ό ν΅νμ¬ ν΄μμ μ°¨λ₯Ό ν립νμλ€. ν립λ λ΄μ₯λνΈμ ν΄μμ μ°¨λ₯Ό ν΅νμ¬ κΈ°μ‘΄μ μμΈ‘ ν μ μμλ λ²μμ λν μμμ±λ₯ μΆμ μμ λμΆνμλ€. μ€ν리ν°(splitter) μμκΈ°μ κ°μ΄ 볡μ‘ν νμμ κ°μ§λ μμκΈ° ν΄μμ μνμ¬, μ νμμλ²κ³Ό μλμ§νλ¦ν΄μλ²μ νΌν©νλͺ¨λΈ(FE-EFA hybrid model)μ μ μνμμΌλ©°, μ λ°μ© μ€νλ¦¬ν° μμκΈ°μ ν΄μ λ° κ³μΈ‘κ°κ³Ό λΉκ΅λ₯Ό ν΅νμ¬ κ²μ¦μ μννμλ€. κ²μ¦μ ν΅νμ¬ μ 립λ ν΄μμ μ°¨μ μ μ μκ³ λ¦¬μ¦μ μ΄μ©νμ¬ μ€νλ¦¬ν° μμκΈ°μ μ€κ³ μ΅μ νλ₯Ό μννκ³ μ μ°¨λ₯Ό ν립νμλ€.
μ μ€μμν΄μ λ° μ€κ³λ₯Ό μν μ°κ΅¬λ₯Ό μννμλ€. κΈ°μ‘΄ ν΄μ λͺ¨λΈμμ κ³ λ €λμ§ μμλ μ§μ μ₯ μν₯μ λ°μν μλμ§νλ¦ν΄μλ²μ κ°λ°νμλ€. μ€λ΄ 곡κ°μ κ²½κ³μμ μ§μ μ₯κ³Ό μν₯μ₯μ κ΄κ³λ₯Ό κΈ°νμν₯ν (geometrical acoustics) κ°λ
μ μ μ©νμ¬ κ·λͺ
νμλ€. μ€μ μ λ°μ μ€μμ μμκ³μΈ‘μ μννμ¬, μμΈ‘κ²°κ³Όμ λΉκ΅λ₯Ό μννμλ€. μμΌμΉνλ κ²°κ³Όλ₯Ό λμΆνμ¬ κ²μ¦μ μλ£νμμΌλ©°, μ 립λ ν΄μμ μ°¨λ₯Ό λ°νμΌλ‘ μ μ€μμ μ΅μνλ₯Ό μν μ€κ³μ°κ΅¬λ₯Ό μννμλ€.Since energy flow analysis uses the space-time averaged energy density and intensity, it is an analysis method suitable for vibration and noise analysis in the medium-to-high frequency ranges, unlike the traditional analysis methods based on displacement and pressure. Numerical analysis techniques such as the finite element method and the boundary element method can be easily applied because the governing equation of energy flow analysis has the form of a second-order partial differential equation. Energy flow anlysis uses finite element method and boundary element method to obtain the solution of the governing equation, and are effective in the vibration analysis and noise analysis of complex structures, respectively.
In this paper, acoustic energy flow model for sound absorbing materials widely used for cabin noise control is developed. Unlike existing acoustic energy flow models for low-damping acoustic media (air and water), loss factors for high-damping media are newly defined using the complex acoustic properties of sound absorbing materials, and the energy governing equation is derived. The usefulness of application and verification for sound-absorbing structures are confirmed by comparing the developed acoustic energy flow analysis, finite element method, and measured values.
A hypersingular integral of the energy flow governing equation is derived to solve the boundary energy discontinuity problem in the analysis of a multi-layered silencer composed of air and sound absorbing material. An acoustic energy flow model for sound absorbing materials and hypersingular integral equation are used to analyze the noise of lined ducts for ships, and the analysis procedure is established through comparison with measured values. Through the established analysis procedure, the noise performance estimation formulas for the previously unpredictable range are derived. For the analysis of a silencer with a complex shape such as a splitter silencer, a FE-EFA hybrid model of the finite element method and the energy flow analysis method is presented. Validation and the design optimization of the splitter silencer are performed, and the optimization procedure for splitter silencers is established using the analysis procedure and genetic algorithm(GA).
A study is conducted for cabin noise analysis and design. We developed an energy flow analysis that reflects direct field effects, which have not been considered in the existing analysis model. We investigated the relationship between direct fields and the reverberation fields on the boundary of an indoor space by applying the concept of geometrical acoustics. Noise measurement is performed in the actual ship cabin, and comparison with the predicted results is performed. A well-matched result is obtained and verification is completed, and based on the established analysis procedure, design studys are conducted to minimize cabin noise.1. μλ‘ 1
1.1. μ°κ΅¬λ°°κ²½ λ° λ΄μ© 1
1.2. λ
Όλ¬Έκ΅¬μ± 5
2. μλμ§νλ¦ν΄μλ²μ κ°μ 7
2.1. μλμ§νλ¦ν΄μλ² 7
2.1.1. μλμ§νλ¦ν΄μλ²μ μ°κ΅¬μ¬ 7
2.1.2. ννμ μλμ§νλ¦ν΄μλ² 10
2.1.3. 3μ°¨μ λ°©μ¬μμμ λν μλμ§νλ¦ν΄μλ² 15
2.1.4. 3μ°¨μ μν₯곡κ°μ λν μλμ§νλ¦ν΄μλ² 19
3. ν‘μμ¬ μν₯ μλμ§νλ¦ν΄μλͺ¨λΈ κ°λ° 28
3.1. ν‘μμ¬ μν₯ μλμ§μ§λ°°λ°©μ μ 28
3.1.1. μλμ§ μ λ¬ κ΄κ³μ 29
3.1.2. μλμ§ μμ€ κ΄κ³μ 36
3.1.3. μλμ§μ§λ°°λ°©μ μ 39
3.2. ν‘μμ¬ μν₯ μλμ§νλ¦ν΄μλ²μ ν΄μ 41
3.2.1. ν‘μμ¬ μν₯ μλμ§νλ¦ν΄μλ² κ²μ¦ 41
3.2.2. μλμ§νλ¦ν΄μλ²μ μ΄μ©ν ν‘μ ꡬ쑰물 ν΄μ 46
3.2.3. ν‘μꡬ쑰물 μ€κ³μ λ°λ₯Έ ν΄μκ²°κ³Ό λΆμ 50
4. μ λ°μ© HVAC μμκΈ° ν΄μ 75
4.1. μ μ€ μ£Ό μμμ 75
4.1.1. μ λ°μ© HVAC μμ€ν
νΉμ± 75
4.1.2. HVAC μμκΈ° μ°κ΅¬μ¬λ‘ λΆμ 83
4.2. μλμ§νλ¦ν΄μλ²μ μ΄μ©ν μμκΈ° ν΄μ 88
4.2.1. λ€μμν΄μμ μν μ΄λ¨μΌμ²΄μ λΆλ² 88
4.2.2. μ λ°μ© μμκΈ° ν΄μμ μν FE-EFA κΈ°λ² 98
4.3. μ λ°μ© HVAC μμκΈ° ννμ λ°λ₯Έ μμν΄μ 114
4.3.1. λν λ΄μ₯λνΈ(lined duct)μμν΄μ 114
4.3.2. μ μμ κ³ λ €ν λν λ΄μ₯λνΈ(lined duct) 123
4.3.3. μ€νλ¦¬ν° μμκΈ°(splitter silencer) μμν΄μ 134
4.4. μ λ°μ© HVAC μμκΈ° μ€κ³ 140
4.4.1. μ λ°μ© HVAC μμκΈ° μ±λ₯ μΆμ μ 140
4.4.2. μ λ°μ© HVAC μμκΈ° μ΅μ ν 144
5. μλμ§νλ¦ν΄μλ²μ μ΄μ©ν μ μ€ μμν΄μ 165
5.1. μ μ€ μμ νΉμ± 165
5.1.1. μ μ€μμκ·μ λ° νΉμ± 165
5.1.2. μ μ€μμν΄μ μ°κ΅¬μ¬λ‘ 166
5.2. Direct Acoustic Energy Flow Analysis (DAEFA) 167
5.2.1. μ§μ μμ₯ κΈ°λ³Έν΄ 167
5.2.2. νμ°μμ₯ κΈ°λ³Έν΄ 170
5.2.3. μ 체μμ₯ μμΈ‘μ μν κ²½κ³μ λΆμ λμΆ 171
5.3. DAEFAλ₯Ό μ΄μ©ν μ μ€ μμν΄μ 175
5.3.1. μ μ€μμ κ³μΈ‘ λ° κ²μ¦ 175
6. κ²°λ‘ λ° ν₯ν μΆμ²μ°κ΅¬ 187
6.1. κ²°λ‘ 187
6.2. ν₯ν μΆμ²μ°κ΅¬ 189
Abstract 199λ°
λΆν 'μ¬νμ£Όμ 리μΌλ¦¬μ¦μ μ‘°μ ν(Koreanization)': λ¬Ένμμμ λΉμ μ μΌμ¬μ체κ³μ μμ¬μ νμ±
νμλ
Όλ¬Έ (λ°μ¬)-- μμΈλνκ΅ λνμ : μ¬νκ³Όνλν μ μΉμΈκ΅νλΆ, 2018. 2. λ°±μ°½μ¬.λ³Έ μ°κ΅¬μ λͺ©νλ νκ΅μ μ μ΄ν 1967λ
λΆνμμ λΉμ μ μΌμ¬μ체κ³κ° μ μΈλκΈ°κΉμ§ μ΄λ°μ¬λ‘κΈ°μ ν΅μ¬ λΆλ¬Έμ νλμλ λ¬Ένμμ λΆλ¬Έμμ μ κ°λ λ΄λ‘ μ μΆμ νλ©΄μ λΉμ μ μΌμ¬μ체κ³λ₯Ό ꡬμ±ν λ¬Έμ λΆλ¬Έμ μ μΉμμ¬κ° μ΄λ»κ² μμ¬μ μΌλ‘ νμ±λμλμ§ λ°νλ κ²μ΄λ€. λΉμ μ μΌμ¬μ체κ³λ 1960λ
λ νλ° μ΄ν νμ¬μ μ΄λ₯΄λ λΆνμ κ·μ νλ μ§λ°°μ μ΄λ°μ¬λ‘κΈ°λ‘, κ·Έ νμ±μ ν΄λͺ
νλ λ¬Έμ λ νμ¬ λΆνμ λ΄λΆμ μλκ³Ό λμΈμ μκ·Έλμ μ΄ν΄νλ λ° μ€μν ν¨μλ₯Ό κ°μ§λ€. λ³Έ μ°κ΅¬μ μ£Όλ κ΄μ¬μ μΈλΆμ μΌλ‘ 보기μ μμ ν κ³ μ λ μΈμ΄μ²΄κ³λ₯Ό μ΄λ―Έ ν립ν μ΄λ°μ¬λ‘κΈ°λ‘μμ λΉμ μ μΌμ¬μ체κ³κ° μλλ€. 그보λ€λ μ΄λ°μ¬λ‘κΈ°λΌ λΆλ¦¬λ λΉμ μ μΌ μ¬μ체κ³κ° λ΄μΈμ μΌλ‘ κ³ μ λ νλμ 참쑰체κ³λ₯Ό ꡬμΆνκ² λ κ³Όμ μ κ·Έλ₯Ό νμ±ν λ΄λ‘ λ€μ νλμΈ λ¬Έμ λΆλ¬Έμμμ μΈμ΄μ²΄κ³ νμ±μ ν΅ν΄ μ΄ν΄νλ κ²μ΄λ€. λ³Έ μ°κ΅¬λ μ΄λ€ λ¬Έμ μμλ€κ³Ό μμ , μμμ λ€μ λν λ
Όμλ€, κ΅λ΄, κ΅μ μ μΉμ λ§₯λ½ μμμ νλμ κ²¬κ³ ν 체κ³μ²λΌ 보μ΄λ λΉμ μ μΌμ¬μ체κ³μ μΈμ΄ 체κ³κ° μμ¬μ μΌλ‘ νμ±λμλμ§ νμ
νκ³ μ νλ€.
λ³Έ μ°κ΅¬λ λΆν μ¬νμ£Όμ 체μ νμ±κΈ°μ μΌμ΄λ μ£Όμ λ΄λ‘ λ€ μ€ νλλ‘ λ³Έ μ°κ΅¬κ° μ¬νμ£Όμ 리μΌλ¦¬μ¦μ μ‘°μ ν(Koreanization) λ΄λ‘ μ΄λΌ μ μνλ μΌλ ¨μ λ
Όμλ€μ κ·Έ κ²ν λμμΌλ‘ νλ€. 1960λ
λ νλ°μ μ΄λ₯΄λ μ ν μκΈ°(1953-1967λ
)λ μ°λ¦¬κ° μ΄ν΄νλ λΆν λ―Όμ£Όμ£Όμ μΈλ―Ό 곡νκ΅μ΄λΌλ 체μ κ° μ λμ , μ΄λ
μ μΌλ‘ νμ±λ κΈ°κ°μ΄λ€. 체μ νμ±μ κ·Έμ κ΄λ ¨λ λ€μν μ£Όμ λ΄λ‘ (κ²½μ ν, μμ¬ν, λ―Όμν, κ³ κ³ ν, μΈμ΄ν, μλ¬Όν, 건μΆν λ± λ€μν λΆμΌλ₯Ό ν¬κ΄νλ)μ νμλ‘ νλ€. μ΄λ¬ν λ΄λ‘ λ€μ νμ μ λΆλ¬Έμ λ
Όμμ΄λ©΄μ λμμ κ°ν μ μΉμ ν¨μλ₯Ό κ°μ§λ μ μ±
μ λ
Όμκ³Ό κ²°λΆλλ μ€μ²μ μ±κ²©μ κ°μ§λ€. λ³Έ μ°κ΅¬κ° μ£Όλͺ©νλ κ²μ μ΄λ¬ν 체μ νμ±κΈ°μ λ΄λ‘ λ€ μ€ λ¬Ένμμ λΆλ¬Έ λ΄λ‘ μΌλ‘, μ΄ λ΄λ‘ μ μλΉμνΈμμ μμ
ν μ¬νμ£Όμ 리μΌλ¦¬μ¦λΌλ νΉμ ν λ―Έν 체κ³(μ°Έμ‘° 체κ³)λ₯Ό λΆνμ ν μμ λΏλ¦¬λ΄λ € νλ μ‘°μ λ¬Ένμ΄λΌλ μλ‘μ΄ λΆλ¬Έμ νμ±νλ κ³Όμ μ κ°μ
λ μΌλ ¨μ λ
Όμλ€λ‘ ꡬμ±λλ€. μλΉμνΈ μ¬νμ£Όμ 리μΌλ¦¬μ¦ 체κ³μ ν΅μ¬μΈ λ λμ λΉ(黨)λ¬Έν 건μ€μ λΆν νμ€μ λ§κ² μννλ κ², κ·Έκ²μ΄ λ°λ‘ 1960λ
λ νλ°μ μ΄λ₯΄λ μ ν μ¬νμ£Όμ 리μΌλ¦¬μ¦μ μ‘°μ ν λ΄λ‘ μ μ‘΄μ¬ μ΄μ μλ€.
μ ν 1960λ
λ νλ°κΉμ§ λ¬Ένμμ κ³μμ μΌμ΄λ λΉ-κ΅κ° λ¬Ένμμ 건μ€μ λν λ΄λ‘ μΌλ‘μ μ¬νμ£Όμ 리μΌλ¦¬μ¦μ μ‘°μ νλ μλΉμνΈμ μ¬νμ£Όμ 리μΌλ¦¬μ¦ 체κ³μ μκ±°ν΄ μ²΄μ νμ±κΈ°μ λΆνμ μλ‘μ΄ νμ€μ λ§λ λΆνμ μ¬νμ£Όμ λ¬Έμμ νμκ³Ό λ΄μ©μ ꡬμ±νλ€. λΉ-κ΅κ° 체μ νμ±κΈ° μ¬νμ£Όμ 건μ€μ μ리μ λ°λΌ νμ€μ μλ‘κ² μ μνκ³ κ·Έ μλ‘μ΄ νμ€μ λ§λ€μ΄λ΄λ μμ
μ κ²½μ λΆλ¬Έ 건μ€κ³Ό ν¨κ» λ¬Έν λΆλ¬Έμ 건μ€μ ν¬ν¨νλ κ²μ΄μλ€. κ²½μ 건μ€μμμ λ§μ°¬κ°μ§λ‘ λ¬Έν 건μ€μ μμ΄ μλ‘μ΄ νμ€μ 건μ€, μ‘°μ§ μ리λ κ΅μ μ μ¬νμ£Όμ μ§μμ΄ κ³΅μ νλ λ§μ€-λ λμ£Όμ μΈκ³κ΄, λ―Έν 체κ³λ‘ μΈλΆμμ λ€μ¬μ¨ κ²μ΄μλ€. κ·Έλ°λ° μ΄ μΈλΆμμ μμ
λ μΈμ΄ 체κ³λ₯Ό λ²μν΄ ν μ°©ννλ λΆνμ μ¬νμ£Όμ λ¬Έν 건μ€μ κ³Όμ μ λ¨μν λ¬Έμμ μμ΄ μλ‘μ΄ νμκ³Ό λ΄μ©μ λ§λ€μ΄λ΄λ μμ
μ΄ μλμλ€. μ΄ μΈμ΄ 체κ³μ ν μ°©νκ° μλ°ν κ²μ κΈ°μ‘΄κ³Όλ μ°¨λ³λ λ¬Ένμ λν μλ‘μ΄ μΈμ, κ·Έ μΈμμ ν λλ‘ μλ‘μ΄ νμ€μ λ°μνκ³ λμμ κ·Έ νμ€μ λ§λ€μ΄λ΄λ λ¬Ένλ₯Ό 건μ€νλ μΈμ , λ¬Όμ 쑰건μ νμ±μ΄μλ€. μ¦ μ¬νμ£Όμ 리μΌλ¦¬μ¦μ μ‘°μ νλ λΆνμ λ§₯λ½μμ μ¬νμ£Όμ 리μΌλ¦¬μ¦μ μΈμ΄ 체κ³λ₯Ό μ€μ²νλ μλ‘μ΄ μΈκ°λ€μ λ§λ€μ΄λ΄λ μμ
μ΄μλ€.μ 1 μ₯ μ λ‘ .......................................................................................1
μ 1 μ λΆν μ¬νμ£Όμ 건μ€μ μ£Όμμ£Όμ(voluntarism)μ νΉμ± 7
μ 2 μ λ΄λ‘ λ€μ λν μμ¬μ μ κ·Όμ μλ―Έ ........................... 11
μ 2 μ₯ μ¬νμ£Όμ 리μΌλ¦¬μ¦μ μ‘°μ ν λ΄λ‘ μ μμ¬μ μ κ·Ό.........17
μ 1 μ κΈ°μ‘΄ λΆν λ¬Έμ λ΄λ‘ μ°κ΅¬μ λΉνμ κ²ν .................18
1. κΈ°μ‘΄ λΆν λ¬Ένμ¬ μμ λ° λ¬Έν μ°κ΅¬μ κ²ν ............................19
2. μλ ¨ μ¬νμ£Όμ 리μΌλ¦¬μ¦ μνμ μ±κ²©μ λν κ³ μ°°κ³Ό κ·Έ λΆνμ μ μ©..........................................................................................23
μ 2 μ λΆν 체μ νμ±κΈ° λ¬Έμ λ΄λ‘ μ λν μμ¬μ μ κ·Ό ....27
1. μλ ¨ μ¬νλ¬Ένμ¬ μ°κ΅¬μ λ°©λ²λ‘ μ μ°Έκ³ ...................................28
2. μλ ¨ μ¬νμ£Όμ 리μΌλ¦¬μ¦μ μμ¬μ μ κ·Όμ λΉκ΅μ μκ° .........33
μ 3 μ μ°κ΅¬ μλ£μ λ°©λ² .........................................................40
μ 4 μ κ° μ₯μ λ΄μ© .................................................................42
μ 3 μ₯ μ¬νμ£Όμ 리μΌλ¦¬μ¦ μ‘°μ ν λ΄λ‘ μ μ£Όμ κ°λ
: μ 2μ°¨ μ‘°μ μκ° λν ......................................................................................................44
μ 1 μ 2μ°¨ μ‘°μ μκ°λνμ μμ¬μ λ§₯λ½ ..............................47
μ 2 μ λμμ£Όμ λΉνκ³Ό μ νν λ¬Έμ ....................................52
μ 3 μ λμμ£Όμ λΉνκ³Ό κ·Έ λμ ............................................57
1. λ
μ-μΈλ―Όμ μꡬμ νκ° ............................................................59
2. λΉμ μ§λλΆλ¬Έμ μ¬μ
κ°μ ........................................................63
3. μ μΈ μκ° λμ΄μ μ‘μ± ................................................................67
4. κ³ μ μ μ°κ³Ό λ―Όμ‘± λ¬Έν μ ν΅μ νμ¬μ κ³μΉ .............................72
5. λ²μκ³Ό μ μ§ λ¬Ένμ μ°½μ‘°μ μ μ© ...............................................75
6. νμ§ ν견 μ¬μ
κ³Ό μλ‘μ΄ νμ€μ νμν ..................................79
μ 4 μ μκ²°: μ ννμ μ‘°μ μ κ·Όλμ± ...................................82
μ 4 μ₯ μ‘°μ μ κ·Όλμ±μ μ°½μΆ 1: μλ ¨ μ¬νμ£Όμ 리μΌλ¦¬μ¦μ λ²μκ³Ό
ii
λΉνμ μ μ©...............................................................................................83
μ 1 μ μλ ¨ μ¬νμ£Όμ 리μΌλ¦¬μ¦μ λ²μκ³Ό νμ΅ ...................84
μ 2 μ μλ ¨κ³Ό μ€κ΅μ μ¬νμ£Όμ 리μΌλ¦¬μ¦ λ
Όμμ λΉνμ μμ© 99
μ 3 μ μλ ¨ μνμ λΉνμ μμ© .......................................... 117
1. νμ€μΌμ 1957λ
11μ μ‘°μ μκ°λλ§Ή μ€μμμν μ 2μ°¨ μ μνμ λ³΄κ³ μ μνμ λΉνμ μμ©.............................................118
2. μλ ¨ μνμ λ€λ₯Έ λΉνμ μμ©μ μλλ€ ................................127
μ 4 μ νμ§ μ²΄ν μ¬μ
κ³Ό λΉμ μ§λλΆλ¬Έμ νμ± ................137
μ 5 μ μκ²°: μ¬κΈ°μ μ°½μ‘°μ μ μ©μ λ¬Έμ ..........................144
μ 5 μ₯ μ‘°μ μ κ·Όλμ±μ μ°½μΆ 2: λ―Όμ‘±μ 곡κ°μ μ°½μΆ ................148
μ 1 μ μ‘°μ μ νΉμμ± λ΄λ‘ μ μ μ¬(εε²): 1930λ
λ μΉ΄νμ μ°½μλ°©λ²λ‘ λ
Όμκ³Ό ν΄λ°© μ§ν λ―Όμ‘±λ¬Ένλ‘ λ
Όμ .............................151
1. 1930λ
λ μΉ΄ν μ°½μλ°©λ²λ‘ λ
Όμ..............................................153
2. ν΄λ°© μ΄ν λ¨λΆ μ’μ΅ λ―Όμ‘±λ¬Ένλ‘ λ
Όμ ....................................158
μ 2 μ λ―Όμ‘± μ μ°μ κ³μΉ λ¬Έμ : λ―Όμ‘±μ νΉμ± λ
Όμκ³Ό μ¬μ€μ£Όμ λ°μ λ°μ , μ¬νμ£Όμ μ¬μ€μ£Όμ λ°μ λ°μ λ
Όμ ...........................159
1. λ―Όμ‘±μ νΉμ± λ
Όμ .......................................................................160
2. λ¬Έμνμ¬ κ΄λ ¨ λ
Όμ ...................................................................161
μ 4 μ μΈλ―Ό ꡬμ μ°½μμ λ
μ μΈλ―Όλμ€μ νμ± ................166
μ 5 μ μκ²°: μ§κΈκ³Ό νμ¬μ κ³μΉμ λ¬Έμ ..........................175
μ 6 μ₯ μ‘°μ μ κ·Όλμ±μ μ°½μΆ 3: μ¬νμ£Όμμ μΈκ°νμ μ°½μ‘°..177
μ 1 μ νλμ μ£Όμ μ μ²λ¦¬λ§ νμ€ νμν .........................178
μ 2 μ μ μΈ μκ° λΆλμ μ₯μ±κ³Ό 곡μ°μ£Όμμ νμ μ°½μ‘° ...187
μ 3 μ μ‘°μ 곡μ°μ£Όμμ μ ν μ°½μ‘°μ νμΌλΉ¨μ°μ°μ ν΅ κ°ν200
1. μ²λ¦¬λ§ κΈ°μ ................................................................................203
2. λ¨μ‘°μ μ κ΅μ ............................................................................204
3. 1930λ
λ μ‘°μ 곡μ°μ£Όμμ.......................................................205
μ 4 μ μ μΈκ° μ ν μ°½μ‘°μ λΉμ μκ°μ νμ± ...................206
μ 5 μ μκ²°: μ§κΈ μ¬κΈ°μ μ‘°μ μ κ·Όλμ±μ μ°½μΆ.............210
iii
μ 7 μ₯ κ²° λ‘ .................................................................................... 211
μ 1 μ μ‘°μ μ κ·Όλμ± ............................................................ 211
μ 2 μ μ¬νμ£Όμ λ¬Έμμ μμ¬μ νμ±κ³Ό λΉμ μ μΌμ¬μ체κ³212
μ°Έκ³ λ¬Έν.........................................................................................221
Abstract ..........................................................................................236Docto
νμ 곑μ μ μλ‘ μ κ΄ν λͺ κ°μ§ κ°μ€λ€
νμλ
Όλ¬Έ (λ°μ¬)-- μμΈλνκ΅ λνμ : μ리과νλΆ, 2016. 2. λ³λνΈ.The goal of the present thesis is twofoldwe show the two conjectures concerning the arithmetic of elliptic curves: the SteinβWatkins conjecture (for 5-isogenies) and the Gross--Zagier conjecture.
Essentially, Stein--Watkins conjecture tells us about the relations of optimal curves in given rational isogeny class of elliptic curves. In this thesis we show the two optimal curves differ by a 5-isogeny if and only if the isogeny class is '11a'.
The Gross--Zagier conjecture provides a theoretical evidence to the strong form of Birch and Swinnerton-Dyer conjecture. We show when elliptic curves have particular types of rational torsion subgroups, the order of the torsion subgroup divides certain arithmetic invariants attached to the curve.Chapter 1. Introduction 1
Chapter 2. Elliptic curves 5
Chapter 3. Differing isogenies of optimal curves 45
Chapter 4. GrossZagier conjecture 59
Bibliography 127
Abstract (in Korean) 135Docto
νκ²½μ€μΌκ·μ μ ν¨μ¨μ±
μ΅κ·Ό ννΈμΌλ‘λ μμΆλΆμ§μ νμΌλ‘ κ²½κΈ°κ° λ§€μ° μ’μ§ μκ³ λ λ€λ₯Έ ννΈμΌλ‘λ λλκ° νλλ°©μΆμ¬κ±΄μ ν¬ν¨ν νκ²½μ€μΌμ¬κ±΄μ΄ μ°λ¬μ ν°μ Έ νκ²½κ°μ μ λν μ¬λ§μ΄ λμμ§λλ°λ€κ° νκ²½κ°μ μ λν κ΅μ μ μλ ₯λ§μ κ°μ€λ μ λ§μ΄λ€. μν©μ΄ μ΄μ―€ λμ ννΈμμλ μ°λ¦¬κ²½μ μ κ΅μ κ²½μλ ₯μ λμ΄κ³ κ²½κΈ°λ₯Ό λ€μλλ§ μ§μμν€κΈ° μν΄μλ νκ²½μ€μΌκ·μ κ° μνλμ΄μΌ νλ€λ μ£Όμ₯μ΄ κ°λ ₯νκ² λλλλκ° νλ©΄, λ λ€λ₯Έ ννΈμμλ νκ²½λ¬Έμ μ λ³΄λ€ λ λ₯λμ μΌλ‘ λμ²νκΈ° μν΄μλ νκ²½μ€μΌκ·μ κ° λν κ°νλμ΄μΌ νλ€λ μλ¦¬κ° λλ€. μ λΆκ° μ¦κ²¨ μ£Όμ°½νλ κ²½μ μ±μ₯κ³Ό ν경보μ μ¬μ΄μ μ‘°νκ° κ·Έ μ΄λ λ 보λ€λ μ΄λ €μμ§κ³ μλ μν©μΈ κ² κ°λ€. μ¬μ€ νκ²½μ€μΌκ·μ μ λν κ°νλ§μ΄ λ₯μ¬κ° μλλ€. μ΄νμμ μμΈν μ΄ν΄λ³΄κ² μ§λ§, νκ²½μ€μΌκ·μ λ₯Ό λΉλ‘―ν μ λΆμ κ°μ’
κ·μ λ€μ ꡬ쑰μ μΈ λΆμμ©μ κ°λ₯μ±μ λ΄ν¬νκ³ μκΈ° λλ¬Έμ΄λ€. κ·μ λ 볡μ‘ν κ²½μ μ λ―Έλ‘λ₯Ό ν΅ν νκΈκ³Όμ μ κ±°μΉ νμλΌμΌ κ·Έ ν¨κ³Όλ₯Ό λλ¬λ΄λ λ²μ΄λΌμ λΉμ΄μ μλν ν¨κ³Όμλ μ ν λ€λ₯Έ ν¨κ³Όκ° λνλλ μ¬λ‘κ° λΉμΌλΉμ¬νλ€. κ·Έλ κΈ° λλ¬Έμ νκ²½μ€μΌκ·μ λ₯Ό λν κ°ννλ€κ³ ν΄μ 곧 λ°λ‘ λΉμ΄ μλν νκ²½κ°μ ν¨κ³Όκ° μμν λ°μνλ κ²μ μλλ€. νκ²½μ€μΌκ·μ μ κ°νλ λμμ λΆμμ©μ λνκ°νλ₯Ό μλ―Έν μλ μλ€. κ·Έλ λ€κ³ νκ²½μ€μΌκ·μ λ₯Ό μννλ κ²μ λ¨κΈ°μ μΌλ‘λ κ²½μ λ₯Ό νμ±νμν€λλ° μ½κ°μ λμμ μ€μ§λ λͺ¨λ₯΄λ μ₯κΈ°μ μΌλ‘λ κ²½μ μ±μ₯κ³Ό ν경보μ , μ΄ λ λ§λ¦¬ ν λΌλ₯Ό λͺ¨λ λμ³λ²λ¦¬κ² ν 곡μ°μ΄ ν¬λ€
Soft Three-Axis Load Cell using Liquid-Filled 3D Microchannels Embedded in a Highly Deformable Elastomer
νμλ
Όλ¬Έ (μμ¬)-- μμΈλνκ΅ λνμ : 곡과λν κΈ°κ³ν곡곡νλΆ, 2018. 8. λ°μ©λ.The advances in soft robotics have increased the need of soft sensors in various applications involved with physical interactions between humans and robots. In this paper, we propose a soft multi-axis force sensor made of multi-material elastomer layers and embedded microfluidic channels that are sensitive to compression perpendicular to the channels length. The microchannels are geometrically divided into multiple segments for detecting forces in three axes. When a force is applied to the top surface of the sensor, the microchannels are compressed by multi-segmented force plates made of rigid plastic. While the microchannels located on the sides in the structure detect shear forces, the microchannel at the bottom detects normal force. The three-dimensional configuration of the microchannel physically separates the side channels from the bottom channel and consequently enables mechanical decoupling of shear forces from normal force. This paper describes the design and fabrication of the proposed sensor and discusses the experimental results for sensor characterization.Chapter 1. Introduction
Chapter 2. Design
2.1. Sensing Mechaism
2.2. Sensor Structure
2.3. Configuration of Microchannels
2.4. Force Plates
Chapter 3. Fabrication
Chapter 4. Sensor Characterization
4.1. Experimental Setup
4.2. Result
Chapter 5. Materials and Sensor Performance
5.1. Material Selection
5.2. Experimental Result
Chapter 6. Calibration using Machine Learning
6.1. Integration with Soft End Effctor
6.2. Learning Method
6.3. Result
Chapter 7. Conclusion
Bibliography
Abstract in KoreanMaste
L1 and L2 Acquisition of Korean Language : Focus on Phonological and Morphological Errors
μΈμ΄ μ΅λ κ³Όμ μ λνλλ μ€λ₯λ μΈμ΄μ 보νΈμ±μ΄λ μ΅λ μ리λ₯Ό λ°νλ μ€μν μ΄μ κ° λ μ μλ€. μ΄ λ
Όλ¬Έμ νμ΅μμ μ€κ°μΈμ΄μ λνλ λ°μ μ€λ₯μ νν μ€λ₯λ₯Ό ν λλ‘ μ 1μΈμ΄μ μ 2μΈμ΄λ‘μμ νκ΅μ΄ μ΅λ κ³Όμ μ μ μ¬μ±μ μ°Ύμλ³΄κ³ μ νμλ€. μ΄λ₯Ό μνμ¬ μΈκ΅μΈ νμ΅μλ€μ μ€λ₯ ν¨ν΄μ κ΄μ°°νκ³ , λͺ¨κ΅μ΄λ‘μμ νκ΅μ΄ μ΅λμ κ΄ν μ νμ°κ΅¬ κ²°κ³Όλ€μ κ²ν νμ¬ μΈμ΄ μ΅λ κ³Όμ μ μ΄λ€ μλ¦¬κ° μμ©νλμ§ μ΄ν΄λ³΄μλ€. κ·Έλ¦¬κ³ λͺ¨κ΅μ΄λ‘μμ νκ΅μ΄ μ΅λ κ³Όμ κ³Ό μ 2μΈμ΄λ‘μμ νκ΅μ΄ μ΅λ κ³Όμ μ μ΄λ€ κ·μΉμ±μ΄ μλμ§ μμ보μλ€. κ·Έ κ²°κ³Ό, μ μμ λͺ¨κ΅μ΄λ‘μμ νκ΅μ΄ μ΅λ κ³Όμ κ³Ό λ§μ°¬κ°μ§λ‘, μΈκ΅μΈ νμ΅μλ€μ λͺ¨μ΄λ₯Ό λ¨μν νκ΅μ΄λ‘ λ²μνκΈ°λ³΄λ€ νκ΅μ΄μ λ°μκ³Ό ννμ κ΄ν΄ κ°μ€μ μΈμ°κ³ μ΄λ₯Ό μ€μ μ¬μ©μ μ μ©ν΄λ³΄λ©΄μ μΈμ΄λ₯Ό λ°°μ°κ³ μμμ μ μ μμλ€. μ¦, μ 2μΈμ΄ μ΅λ κ³Όμ μμ μΈμ΄μ 보νΈμ±μ ν¬κ² μν₯μ λ°μ κ²μμ μ§μν μ μλ€. λ°λΌμ νμ΅μμ μ€κ°μΈμ΄μ λ³΄λ€ λ§μ κ΄μ¬μ κΈ°μΈμμΌλ‘μ¨ νμ΅μμ μΈμ§ κΈ°λ₯μ κ°μ‘°νλ μΈμ΄ κ΅μ‘μ΄ μ΄λ£¨μ΄μ§ μ μκ² λ κ²μ΄λ€.
Error analysis is one of the most useful methods for language acquisition research. This paper discusses about the characteristics common to L1 and L2 acquisition of Korean language on the basis of the phonological and morphological Errors. I have analyzed the characteristics of the interlanguage shown by foreign adult learners. In addition, I have probed for the principles governing L1 acquisition by examining the previous studies. Empirical results provide strong support for the systematicness in L1 and L2 acquisition. L2 Learners do not simply translate between the L1 and the L2, but apply hypotheses to the L2, and the same is true of the L1 learners. Thus, We might expect linguistic generalities to play an important role in acquisition of L2. In conclusion, it is necessary to note the interlanguage of language learners to develop the methodology of language teaching that emphasizes learners' cognitive functions
- β¦