2 research outputs found

    Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ

    Get PDF
    The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray flux is consistent with the results of the Milagro detector, but is 2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ along 4 years of data taking support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the author lis

    OBSERVATION OF TeV GAMMA RAYS FROM THE UNIDENTIFIED SOURCE HESS J1841−055 WITH THE ARGO-YBJ EXPERIMENT

    No full text
    We report the observation of a very high energy Îł -ray source whose position is coincident with HESS J1841−055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from 2007 November to 2012 July. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function, we estimate an extension σ = (0.40+0.32 −0.22)◩, which is consistent with the HESS measurement. The observed energy spectrum is dN/dE = (9.0 ± 1.6) × 10−13(E/5 TeV)−2.32±0.23 photons cm−2 s−1 TeV−1, in the energy range 0.9–50 TeV. The integral Îł -ray flux above 1 TeV is 1.3 ± 0.4 Crab, which is 3.2 ± 1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ and possible counterparts at other wavelengths are discussed
    corecore