5 research outputs found

    Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ гСмосовмСстимости ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… наночастиц ΠΌΠ°Π³Π½Π΅Ρ‚ΠΈΡ‚Π° ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Ρ… частиц ΠΌΠ°Π³Π½Π΅Ρ‚ΠΈΡ‚Π°-ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° in vitro

    Get PDF
    The goal of the present research is to study the hemocompatibility of magnetic nanoparticles (MNPs)Β  in model systems in vitro.Materials and methods. Magnetite nanoparticles and magnetite colloidal solutions were used in 0.9% NaCl in concentrations 0.2, 2.0 and 20.0 mg/ml. The study was performed with heparinized human whole blood, 1 ml of which was mixed with 1 of ml nanoparticles/physiological solution. Measurements were made directly after mixing, and then 1, 2.5 and 5 hours later. The amount of reactive oxygen species (ROS) was measured with luminol-dependent chemiluminiscence (CL). An erythrocyte aggregation index was calculated. For the assessment of hemolytic properties, a hemolysis coefficient was calculated based on optical density of the plasma. The nanoparticless surface protein layer investigation was performed with IR-Fourier spectroscopy.Results. Nanoparticles decline CL in timeand concentration-dependent manner. Erythrocyte aggregation stability grows, but concentration and/or application time increment leads to significant hemolysis. IR-Fourier spectroscopy data shows albumin as main component of protein crown, whose conformation changes in time.Given data proves safety of studied MNPs in relation to examined parameters in low (0.2 and 2.0 mg/ml) concentrations up to 2.5 hours interaction. This allows us to treat these MNPs as a promising agents for further use in medical practice after completing examinations related to other homeostasis indicators.ЦСлью Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования явилось ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ гСмосовмСстимости ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… наночастиц (МНЧ) Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… систСмах in vitro.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½Ρ‹Π΅ растворы наночастиц ΠΌΠ°Π³Π½Π΅Ρ‚ΠΈΡ‚Π° (МНЧ1) ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Ρ… частиц ΠΌΠ°Π³Π½Π΅Ρ‚ΠΈΡ‚Π°-ΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌΠ° (МНЧ2) Π² 0,9%-ΠΌ растворС NaCl Π² концСнтрациях 0,2; 2,0 ΠΈ 20,0 ΠΌΠ³/ΠΌΠ». ИсслСдованиС ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π½Π° Π³Π΅ΠΏΠ°Ρ€ΠΈΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ†Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΊΡ€ΠΎΠ²ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, для Ρ‡Π΅Π³ΠΎΒ  ΠΊ 1 ΠΌΠ» ΠΊΡ€ΠΎΠ²ΠΈ добавляли 1 ΠΌΠ» раствора наночастиц ΠΈΠ»ΠΈ физиологичСского раствора (ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ). Π˜Π·ΠΌΠ΅Ρ€Π΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ нСпосрСдствСнно послС приготовлСния смСси Ρ‡Π΅Ρ€Π΅Π· 1; 2,5 ΠΈ 5 Ρ‡. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ кислорода (АЀК) Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° люминолзависимой Ρ…Π΅ΠΌΠΈΠ»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ (Π₯Π›), вычисляли индСкс Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ эритроцитов, для ΠΎΡ†Π΅Π½ΠΊΠΈ гСмолитичСских свойств рассчитывали коэффициСнт Π³Π΅ΠΌΠΎΠ»ΠΈΠ·Π° Π½Π° основС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ оптичСской плотности ΠΏΠ»Π°Π·ΠΌΡ‹, исслСдованиС Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ слоя Π½Π° повСрхности наночастиц ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ИК-Π€ΡƒΡ€ΡŒΠ΅ спСктроскопии.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. УстановлСно, Ρ‡Ρ‚ΠΎ наночастицы ΠΎΠ±ΠΎΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 0,2 ΠΈ 20,0 ΠΌΠ³/ΠΌΠ» ΡƒΡΠΈΠ»ΠΈΠ²Π°ΡŽΡ‚ Π₯Π› нСпосрСдствСнно послС ввСдСния ΠΈ ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‚ Π΅Π΅ Π² Ρ…ΠΎΠ΄Π΅ ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΈ, ΠΏΡ€ΠΈ этом эффСкт усиливаСтся с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ воздСйствия. Π’Π°ΠΊΠΆΠ΅ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ устойчивости эритроцитов, ΠΎΠ΄Π½Π°ΠΊΠΎ с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π΄ΠΎΠ·Ρ‹ ΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ воздСйствия наблюдался Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π³Π΅ΠΌΠΎΠ»ΠΈΠ·. ИК-Π€ΡƒΡ€ΡŒΠ΅ спСктроскопия ΠΏΠΎΠΊΠ°Π·Π°Π»Π° осСданиС Π°Π»ΡŒΠ±ΡƒΠΌΠΈΠ½Π° Π½Π° повСрхности МНЧ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ мСняСт свою ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ бСзопасности Π΄Π°Π½Π½Ρ‹Ρ… МНЧ ΠΏΠΎ исслСдованным ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ Π² Π½ΠΈΠ·ΠΊΠΈΡ… концСнтрациях (0,2 ΠΈ 2,0 ΠΌΠ³/ΠΌΠ») ΠΏΡ€ΠΈ взаимодСйствии Π΄ΠΎ 2,5 Ρ‡. Π­Ρ‚ΠΎ позволяСт Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π΄Π°Π½Π½Ρ‹Π΅ Π°Π³Π΅Π½Ρ‚Ρ‹ ΠΊΠ°ΠΊ пСрспСктивныС срСдства для дальнСйшСго использования Π² мСдицинской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ послС Π·Π°Π²Π΅Ρ€ΡˆΠ΅Π½ΠΈΡ исслСдований Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ гомСостаза

    Hemocompatibility of magnetic magnethite nanoparticles and magnetite-silica composites in vitro

    No full text
    The goal of the present research is to study the hemocompatibility of magnetic nanoparticles (MNPs)Β  in model systems in vitro.Materials and methods. Magnetite nanoparticles and magnetite colloidal solutions were used in 0.9% NaCl in concentrations 0.2, 2.0 and 20.0 mg/ml. The study was performed with heparinized human whole blood, 1 ml of which was mixed with 1 of ml nanoparticles/physiological solution. Measurements were made directly after mixing, and then 1, 2.5 and 5 hours later. The amount of reactive oxygen species (ROS) was measured with luminol-dependent chemiluminiscence (CL). An erythrocyte aggregation index was calculated. For the assessment of hemolytic properties, a hemolysis coefficient was calculated based on optical density of the plasma. The nanoparticless surface protein layer investigation was performed with IR-Fourier spectroscopy.Results. Nanoparticles decline CL in timeand concentration-dependent manner. Erythrocyte aggregation stability grows, but concentration and/or application time increment leads to significant hemolysis. IR-Fourier spectroscopy data shows albumin as main component of protein crown, whose conformation changes in time.Given data proves safety of studied MNPs in relation to examined parameters in low (0.2 and 2.0 mg/ml) concentrations up to 2.5 hours interaction. This allows us to treat these MNPs as a promising agents for further use in medical practice after completing examinations related to other homeostasis indicators
    corecore