28 research outputs found

    Adsorption and degradation processes of tributyltin and trimethyltin in landfill leachates treated with iron nanoparticles

    No full text
    cited By 2International audienceBiotic and abiotic degradation of toxic organotin compounds (OTCs) in landfill leachates is usually not complete. In this work adsorption and degradation processes of tributyltin (TBT) and trimethyltin (TMeT) in leachate sample treated with different iron nanoparticles (FeNPs): Fe0 (nZVI), FeO and Fe3O4 were investigated to find conditions for their efficient removal. One sample aliquot was kept untreated (pH 8), while to the others (pH 8) FeNPs dispersed with tetramethyl ammonium hydroxide (TMAH) or by mixing were added and samples shaken under aerated conditions for 7 days. The same experiments were done in leachates in which the pH was adjusted to 3 with citric acid. Size distribution of TBT and TMeT between particles >5μm, 0.45-5μm, 2.5-0.45μm, and 2.5 or <2.5nm, respectively. At pH 8 adsorption of TBT to FeNPs prevailed, while at pH 3, the Fenton reaction provoked degradation of TBT by hydroxyl radicals. TBT was the most effectively removed (96%) when sequential treatment of leachate with nZVI (dispersed by mixing) was applied first at pH 8, followed by nZVI treatment of the aqueous phase, previously acidified to pH 3 with citric acid. Such treatment less effectively removed TMeT (about 40%). It was proven that TMAH provoked methylation of tin, so mixing was recommended for dispersion of nZVI

    Development of the extraction method for the simultaneous determination of butyl-, phenyl- and octyltin compounds in sewage sludge

    No full text
    cited By 21International audienceThe toxicity and bioaccumulation of organotin compounds (OTCs) led to the development of sensitive and selective analytical methods for their determination. In the past much attention was assigned to the study of OTCs in biological samples, water and sediments, coming mostly from marine environment. Little information about OTCs pollution of terrestrial ecosystems is available. In order to optimise the extraction method for simultaneous determination of butyl-, phenyl- and octyltin compounds in sewage sludge five different extractants (tetramethylammonium hydroxide, HCl in methanol, glacial acetic acid, mixture of acetic acid and methanol (3:1), and mixture of acetic acid, methanol and water (1:1:1)), the presence or not of a complexing agent (tropolone), and the use of different modes of extraction (mechanical stirring, microwave and ultrasonic assisted extraction) were tested. Extracted OTCs were derivatised with sodium tetraethylborate and determined by gas chromatography coupled with mass spectrometer. Quantitative extraction of butyl-, phenyl- and octyltin compounds was obtained by the use of glacial acetic acid as extractant and mechanical stirring for 16 h or sonication for 30 min. The limits of detection and quantification for OTCs investigated in sewage sludge were in the ng Sn g-1 range

    Determination of hexavalent chromium in cement by the use of HPLC-ICP-MS, FPLC-ETAAS, spectrophotometry and selective extraction techniques

    No full text
    cited By 22International audienceDue to the high toxicity of hexavalent Cr, an European directive has recently been issued limiting the content of water-soluble Cr(VI) in cement to a maximal concentration of 2 mg kg-1. In order to fulfil the legislative requirements, it is often necessary to use reducing agents to lower the content of hexavalent Cr in cement. In the present work the abilities of HPLC-ICP-MS, FPLC-ETAAS, spectrophotometry and selective extraction procedure were estimated for the determination of Cr(VI) in aqueous cement extracts, containing high and low Cr(VI) concentrations. After comparison of the analytical performances of the different analytical methods used, water extracts of different cement samples were analysed. A good agreement was obtained for cement samples containing Cr(VI) concentration higher than 6 mg kg-1. Differences between techniques in general did not exceed 10%. With the exception of selective extraction all techniques applied are accurate (recoveries of spiked samples lay between 95-103%) and of adequate sensitivity. The MIBK extraction procedure exhibited limitations in cement samples that were treated with reducing agents due to the gel formation in the organic phase. Because of its accuracy, high sensitivity and the high speed of the analysis, the HPLC-ICP-MS procedure could be recommended as a technique of choice. However, FPLC-ETAAS and spectrophotometry may also be applied for the determination of Cr(VI) in cement samples and cement samples treated with reducing agents. © The Royal Society of Chemistry 2005

    Influence of the soil matrices on the analytical performance of headspace solid-phase microextraction for organotin analysis by gas chromatography-pulsed flame photometric detection

    No full text
    cited By 21International audienceOrganotin compounds (OTCs) have been identified in a variety of environmental media (air, surface water, groundwater, soil and sediments). In the past, much attention was assigned to the study of the OTCs content in biological samples, water and sediments. Little information about OTCs in soil is available. In this work, a procedure for butyl and phenyltin determination in soils by headspace-solid-phase microextraction (HS-SPME) gas chromatography-pulsed flame photometric detection (GC-PFPD) was investigated. For SPME analysis, a polydimethylsiloxane (PDMS) coating was applied. Peat soil rich in organic matter and with a high cation-exchange capacity (CEC), and clay soil low in organic matter and with a low CEC were analysed. The influence of these different soil matrices on HS-SPME analysis was evaluated by spiking of samples. In general, the recoveries for the two spiked soils exceeded 80%. The repeatability of the method was better than 10%. The limits of detection (LODs) and limits of quantification (LOQs) were in the ng Sn g-1 range. The technique may be reliably applied for the determination of butyltins and monophenyltin in soils, while it shows some limitations for the analysis of di- and triphenyltin (TPhT). © 2006 Elsevier B.V. All rights reserved
    corecore