9 research outputs found

    Catalytic Hydrogenation of Nitrocyclohexane with CuCo/SiO2 Catalysts in Gas and Liquid Flow Reactors

    No full text
    Catalytic hydrogenation of nitrocyclohexane proved to be an attractive alternative source of various chemical compounds: cyclohexanone oxime, cyclohexanone, cyclohexanol, cyclohexylamine and dicyclohexylamine. A growing interest in this reaction has been observed in the last few years. Herein, we present the catalytic performance of Cu/SiO2, Co/SiO2 and CuCo/SiO2 in gas and liquid flow nitrocyclohexane hydrogenation. The analysis of synthesized catalysts morphology (BET, TPR, XRD, TEM) in terms of their catalytic behavior allows us to draw general conclusions and determine the optimal conditions for the production of desired products. Application of the monometallic copper leads to the formation of cyclohexanone as the main product, but with low activity. On the other hand, Co/SiO2 shows high activity but gives cyclohexylamine. Bimetallic system CuCo(3:1)/SiO2 allows for the efficient production of 100% cyclohexanone at 5 bar and 75 °C

    Catalytic Hydrogenation of Nitrocyclohexane with CuCo/SiO<sub>2</sub> Catalysts in Gas and Liquid Flow Reactors

    No full text
    Catalytic hydrogenation of nitrocyclohexane proved to be an attractive alternative source of various chemical compounds: cyclohexanone oxime, cyclohexanone, cyclohexanol, cyclohexylamine and dicyclohexylamine. A growing interest in this reaction has been observed in the last few years. Herein, we present the catalytic performance of Cu/SiO2, Co/SiO2 and CuCo/SiO2 in gas and liquid flow nitrocyclohexane hydrogenation. The analysis of synthesized catalysts morphology (BET, TPR, XRD, TEM) in terms of their catalytic behavior allows us to draw general conclusions and determine the optimal conditions for the production of desired products. Application of the monometallic copper leads to the formation of cyclohexanone as the main product, but with low activity. On the other hand, Co/SiO2 shows high activity but gives cyclohexylamine. Bimetallic system CuCo(3:1)/SiO2 allows for the efficient production of 100% cyclohexanone at 5 bar and 75 掳C

    Influence of pretreatment and reaction conditions on the catalytic activity of HAlBEA and CoHAlBEA zeolites in vinyl chloride formation from 1,2-dichloroethane

    No full text
    International audienceHAlBEA and CoHAlBEA zeolite catalysts treated at 523鈥疜 or 873鈥疜 for 3鈥痟 in Ar, H2/Ar or air flows, respectively, were investigated in catalytic dehydrochlorination of 1,2-dichloroethane (DCE). The dehydrochlorination of DCE on these zeolite catalysts resulted in almost 100% selectivity to vinyl chloride (VC) monomer. It was demonstrated that different conditions of pretreatment of zeolite catalysts resulted in varied amount of Lewis and Br酶nsted acid sites responsible of the catalytic activity, stability and selectivity. HAlBEA and CoHAlBEA zeolites treated in the Ar flow showed the best activities in the dehydrochlorination of DCE, while the same zeolites treated in the air flow demonstrated the best time-on-stream stability. To clarify the reasons of differences in the catalytic behavior of HAlBEA and CoHAlBEA treated in the various conditions N2 physisorption, XRD, TPH, TEM, XPS, NMR and FTIR measurements were performed

    Co Loading Adjustment for the Effective Obtention of a Sedative Drug Precursor through Efficient Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-Pentenal

    No full text
    This work presents the effect of Co loading on the performance of CNR115 carbon-supported catalysts in the continuous-flow chemoselective hydrogenation of 2-methyl-2-pentenal for the obtention of 2-methylpentanal, an intermediate in the synthesis of the sedative drug meprobamate. The Co loading catalysts (2, 6, 10, and 14 wt.%) were characterized by Brunauer鈥揈mmett鈥揟eller (BET) surface area analysis, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of hydrogen (H2-TPD) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy for selected samples, and have been studied as hydrogenation catalysts at different pressure and temperature ranges. The results reveal that a certain amount of Co is necessary to achieve significant conversion values. However, excessive loading affects the morphological parameters, such as the surface area available for hydrogen adsorption and the particle size, preventing an increase in conversion, despite the increased presence of Co. Moreover, the larger particle size, caused by increasing the loading, alters the chemoselectivity, favouring the formation of 2-methyl-2-pentenol and, thus, decreasing the selectivity towards the desired product. The 6 wt.% Co-loaded material demonstrates the best catalytic performance, which is related to the formation of NPs with optimum size. Almost 100% selectivity towards 2-methylpentanal was obtained for the catalysts with lower Co loading (2 and 6 wt.%)

    Co Loading Adjustment for the Effective Obtention of a Sedative Drug Precursor through Efficient Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-Pentenal

    No full text
    This work presents the effect of Co loading on the performance of CNR115 carbon-supported catalysts in the continuous-flow chemoselective hydrogenation of 2-methyl-2-pentenal for the obtention of 2-methylpentanal, an intermediate in the synthesis of the sedative drug meprobamate. The Co loading catalysts (2, 6, 10, and 14 wt.%) were characterized by Brunauer&ndash;Emmett&ndash;Teller (BET) surface area analysis, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), temperature-programmed desorption of hydrogen (H2-TPD) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy for selected samples, and have been studied as hydrogenation catalysts at different pressure and temperature ranges. The results reveal that a certain amount of Co is necessary to achieve significant conversion values. However, excessive loading affects the morphological parameters, such as the surface area available for hydrogen adsorption and the particle size, preventing an increase in conversion, despite the increased presence of Co. Moreover, the larger particle size, caused by increasing the loading, alters the chemoselectivity, favouring the formation of 2-methyl-2-pentenol and, thus, decreasing the selectivity towards the desired product. The 6 wt.% Co-loaded material demonstrates the best catalytic performance, which is related to the formation of NPs with optimum size. Almost 100% selectivity towards 2-methylpentanal was obtained for the catalysts with lower Co loading (2 and 6 wt.%)
    corecore