136 research outputs found
Investigation of potential extreme load reduction for a two-bladed upwind turbine with partial pitch
This paper presents a wind turbine concept with an innovative design combining partial pitch with a two-bladed (PP-2B) turbine configuration. Special emphasis is on extreme load reduction during storm situations at standstill, but operational loads are also investigated. In order to compare the loads and dynamics of the PP-2B turbine, a partial pitch three-bladed (PP-3B) turbine and a normal pitch regulated three-bladed (3B) turbine are introduced on the basis of solidity similarity scaling. From the dynamic comparisons between two- and three-bladed turbines, it has been observed that the blade vibrations are transferred differently from the rotor to the tower. For a three-bladed turbine, blade vibrations seen in a fixed frame of reference are split with ±1P only. A two-bladed turbine has a similar split of ±1P but also includes contributions on higher harmonics (±2P, ±3P, ... etc.). Further on, frequency split is also seen for the tower vibrations, where an additional ±2P contribution has been observed for the two-bladed turbine. Regarding load comparisons, the PP-2B turbine produces larger tower load variations because of 2P excitation during the operational cases. However, extreme loads are reduced by approximately 20% for the PP-2B and 18% for the PP-3B compared with the 3B turbine for the parked condition in a storm situation. Moreover, a huge potential of 60% is observed for the reduction of the extreme tower bottom bending moment for the PP-2B turbine, when the wind direction is from ±90° to the turbine, but this also requires that the turbine is parked in a T-configuration
Wind Energy and the Turbulent Nature of the Atmospheric Boundary Layer
Wind turbines operate in the atmospheric boundary layer, where they are
exposed to the turbulent atmospheric flows. As the response time of wind
turbine is typically in the range of seconds, they are affected by the small
scale intermittent properties of the turbulent wind. Consequently, basic
features which are known for small-scale homogeneous isotropic turbulence, and
in particular the well-known intermittency problem, have an important impact on
the wind energy conversion process. We report on basic research results
concerning the small-scale intermittent properties of atmospheric flows and
their impact on the wind energy conversion process. The analysis of wind data
shows strongly intermittent statistics of wind fluctuations. To achieve
numerical modeling a data-driven superposition model is proposed. For the
experimental reproduction and adjustment of intermittent flows a so-called
active grid setup is presented. Its ability is shown to generate reproducible
properties of atmospheric flows on the smaller scales of the laboratory
conditions of a wind tunnel. As an application example the response dynamics of
different anemometer types are tested. To achieve a proper understanding of the
impact of intermittent turbulent inflow properties on wind turbines we present
methods of numerical and stochastic modeling, and compare the results to
measurement data. As a summarizing result we find that atmospheric turbulence
imposes its intermittent features on the complete wind energy conversion
process. Intermittent turbulence features are not only present in atmospheric
wind, but are also dominant in the loads on the turbine, i.e. rotor torque and
thrust, and in the electrical power output signal. We conclude that profound
knowledge of turbulent statistics and the application of suitable numerical as
well as experimental methods are necessary to grasp these unique features (...)Comment: Accepted by the Journal of Turbulence on May 17, 201
Gravitino Dark Matter Scenarios with Massive Metastable Charged Sparticles at the LHC
We investigate the measurement of supersymmetric particle masses at the LHC
in gravitino dark matter (GDM) scenarios where the next-to-lightest
supersymmetric partner (NLSP) is the lighter scalar tau, or stau, and is stable
on the scale of a detector. Such a massive metastable charged sparticle would
have distinctive Time-of-Flight (ToF) and energy-loss () signatures. We
summarise the documented accuracies expected to be achievable with the ATLAS
detector in measurements of the stau mass and its momentum at the LHC. We then
use a fast simulation of an LHC detector to demonstrate techniques for
reconstructing the cascade decays of supersymmetric particles in GDM scenarios,
using a parameterisation of the detector response to staus, taus and jets based
on full simulation results. Supersymmetric pair-production events are selected
with high redundancy and efficiency, and many valuable measurements can be made
starting from stau tracks in the detector. We recalibrate the momenta of taus
using transverse-momentum balance, and use kinematic cuts to select
combinations of staus, taus, jets and leptons that exhibit peaks in invariant
masses that correspond to various heavier sparticle species, with errors often
comparable with the jet energy scale uncertainty.Comment: 23 pages, 10 figures, updated to version published in JHE
Comparison of Engineering Wake Models with CFD Simulations
The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row of turbines in an atmospheric boundary layer, idealised cases of an infinitely long row of wind turbines and infinite wind farms with three different spacings. Both models include a wake expansion factor, which is calibrated to fit the simulated wake velocities. The analysis highlights physical deficiencies in the ability of the models to universally predict the wake velocities, as the expansion factor can be fitted for a given case, but with not apparent transition between the cases. 1
Measurement of the production cross section for W-bosons in association with jets in pp collisions at s=7 TeV with the ATLAS detector
This Letter reports on a first measurement of the inclusive W + jets cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes of the W-boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections sigma (W + >= n)/sigma(W + >= n - 1) for inclusive jet multiplicities n = 1-4. The results, based on an integrated luminosity of 1.3 pb(-1), have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order calculations, studied here for n <= 2, are found in good agreement with the data. Leading-order multiparton event generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicitie
- …