182 research outputs found
The modal logic of set-theoretic potentialism and the potentialist maximality principles
We analyze the precise modal commitments of several natural varieties of
set-theoretic potentialism, using tools we develop for a general
model-theoretic account of potentialism, building on those of Hamkins, Leibman
and L\"owe, including the use of buttons, switches, dials and ratchets. Among
the potentialist conceptions we consider are: rank potentialism (true in all
larger ); Grothendieck-Zermelo potentialism (true in all larger
for inaccessible cardinals ); transitive-set potentialism
(true in all larger transitive sets); forcing potentialism (true in all forcing
extensions); countable-transitive-model potentialism (true in all larger
countable transitive models of ZFC); countable-model potentialism (true in all
larger countable models of ZFC); and others. In each case, we identify lower
bounds for the modal validities, which are generally either S4.2 or S4.3, and
an upper bound of S5, proving in each case that these bounds are optimal. The
validity of S5 in a world is a potentialist maximality principle, an
interesting set-theoretic principle of its own. The results can be viewed as
providing an analysis of the modal commitments of the various set-theoretic
multiverse conceptions corresponding to each potentialist account.Comment: 36 pages. Commentary can be made about this article at
http://jdh.hamkins.org/set-theoretic-potentialism. Minor revisions in v2;
further minor revisions in v
Hierarchies Ontological and Ideological
Godel claimed that Zermelo-Fraenkel set theory is `what becomes of the theory of
types if certain superfluous restrictions are removed'. The aim of this paper is to develop
a clearer understanding of Godel's remark, and of the surrounding philosophical terrain. In
connection with this, we discuss some technical issues concerning in finitary type theories and the programme of developing the semantics for higher-order languages in other higher-order languages
Generality Explained
What explains the truth of a universal generalization? Two types of explanation can be distinguished. While an ‘instance-based explanation’ proceeds via some or all instances of the generalization, a ‘generic explanation’ is independent of the instances, relying instead on completely general facts about the properties or operations involved in the generalization. This intuitive distinction is analyzed by means of a truthmaker semantics, which also sheds light on the correct logic of quantification. On the most natural version of the semantics, this analysis vindicates some claims made—without a proper defense—by Michael Dummett, Solomon Feferman, and others. Where instance-based explanations are freely available, classical logic is shown to be warranted. By contrast, intuitionistic logic (or slightly more) remains warranted regardless of what explanations are available
Abstraction and Grounding
The idea that some objects are metaphysically “cheap” has wide appeal. An influential version of the idea builds on abstractionist views in the philosophy of mathematics, on which numbers and other mathematical objects are abstracted from other phenomena. For example, Hume’s Principle states that two collections have the same number just in case they are equinumerous, in the sense that they can be correlated one-to-one:
(HP) #xx=#yy iff xx≈yy.
The principal aim of this article is to use the notion of grounding to develop this sort of abstractionism. The appeal to grounding enables a unified response to the two main challenges that confront abstractionism. First, we must explicate the metaphor of meta- physical “cheapness.” Second, we must rebut the “bad company” objection, which rejects abstraction principles like (HP) as tarnished by their similarity to inconsistent principles like Frege’s Basic Law V. By enforcing a simple requirement that all abstraction be properly grounded, we propose a unified solution to these two hard, and prima facie unrelated, problems. On our view, grounded abstraction simultaneously ensures “cheap” abstracta and permissible abstraction
- …