24 research outputs found
Structure-based drug discovery with deep learning
Artificial intelligence (AI) in the form of deep learning bears promise for
drug discovery and chemical biology, , to predict protein
structure and molecular bioactivity, plan organic synthesis, and design
molecules . While most of the deep learning efforts in drug
discovery have focused on ligand-based approaches, structure-based drug
discovery has the potential to tackle unsolved challenges, such as affinity
prediction for unexplored protein targets, binding-mechanism elucidation, and
the rationalization of related chemical kinetic properties. Advances in deep
learning methodologies and the availability of accurate predictions for protein
tertiary structure advocate for a in structure-based
approaches for drug discovery guided by AI. This review summarizes the most
prominent algorithmic concepts in structure-based deep learning for drug
discovery, and forecasts opportunities, applications, and challenges ahead
Deep learning for low-data drug discovery:Hurdles and opportunities
Deep learning is becoming increasingly relevant in drug discovery, from de novo design to protein structure prediction and synthesis planning. However, it is often challenged by the small data regimes typical of certain drug discovery tasks. In such scenarios, deep learning approaches–which are notoriously ‘data-hungry’–might fail to live up to their promise. Developing novel approaches to leverage the power of deep learning in low-data scenarios is sparking great attention, and future developments are expected to propel the field further. This mini-review provides an overview of recent low-data-learning approaches in drug discovery, analyzing their hurdles and advantages. Finally, we venture to provide a forecast of future research directions in low-data learning for drug discovery.</p
Exploring Data-Driven Chemical SMILES Tokenization Approaches to Identify Key Protein-Ligand Binding Moieties
Machine learning models have found numerous successful applications in
computational drug discovery. A large body of these models represents molecules
as sequences since molecular sequences are easily available, simple, and
informative. The sequence-based models often segment molecular sequences into
pieces called chemical words (analogous to the words that make up sentences in
human languages) and then apply advanced natural language processing techniques
for tasks such as drug design, property prediction, and
binding affinity prediction. However, the chemical characteristics and
significance of these building blocks, chemical words, remain unexplored. This
study aims to investigate the chemical vocabularies generated by popular
subword tokenization algorithms, namely Byte Pair Encoding (BPE), WordPiece,
and Unigram, and identify key chemical words associated with protein-ligand
binding. To this end, we build a language-inspired pipeline that treats high
affinity ligands of protein targets as documents and selects key chemical words
making up those ligands based on tf-idf weighting. Further, we conduct case
studies on a number of protein families to analyze the impact of key chemical
words on binding. Through our analysis, we find that these key chemical words
are specific to protein targets and correspond to known pharmacophores and
functional groups. Our findings will help shed light on the chemistry captured
by the chemical words, and by machine learning models for drug discovery at
large.Comment: 16 pages, 11 figures, new computational analysis and extended case
studie