100 research outputs found

    Lossless image compression by LMS adaptive filter banks

    Get PDF
    A lossless image compression algorithm based on adaptive subband decomposition is proposed. The subband decomposition is achieved by a two-channel LMS adaptive filter bank. The resulting coefficients are lossy coded first, and then the residual error between the lossy and error-free coefficients is compressed. The locations and the magnitudes of the nonzero coefficients are encoded separately by an hierarchical enumerative coding method. The locations of the nonzero coefficients in children bands are predicted from those in the parent band. The proposed compression algorithm, on the average, provides higher compression ratios than the state-of-the-art methods

    Micromachining with square-Shaped 1 ns-Long pulses from an all-Fiber Yb-Doped laser-Amplifier system

    Get PDF
    We demonstrate micromachining with 1ns-long pulses from an all-fiber laser. Fiber lasers generating uncompressible long pulses have been ignored as undesired operational modes, however their robust, low-repetition-rate operation is well suited to micromachining. © 2011 Optical Society of America

    Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier

    Get PDF
    Thermal effects, which limit the average power, can be minimized by using low-doped, longer gain fibers, whereas the presence of nonlinear effects requires use of high-doped, shorter fibers to maximize the peak power. We propose the use of varying doping levels along the gain fiber to circumvent these opposing requirements. By analogy to dispersion management and nonlinearity management, we refer to this scheme as doping management. As a practical first implementation, we report on the development of a fiber laser-amplifier system, the last stage of which has a hybrid gain fiber composed of high-doped and low-doped Yb fibers. The amplifier generates 100 W at 100 MHz with pulse energy of 1 μJ. The seed source is a passively mode-locked fiber oscillator operating in the all-normaldispersion regime. The amplifier comprises three stages, which are all-fiber-integrated, delivering 13 ps pulses at full power. By optionally placing a grating compressor after the first stage amplifier, chirp of the seed pulses can be controlled, which allows an extra degree of freedom in the interplay between dispersion and self-phase modulation. This way, the laser delivers 4.5 ps pulses with ∼200 kW peak power directly from fiber, without using external pulse compression. © 2012 Optical Society of America

    The role of the family in attributing meaning to living with HIV and its stigma in Turkey

    Get PDF
    Stigma attached to HIV/AIDS remains a global problem, with severe negative consequences for people living with HIV (PLHIV). Family support is fundamental for PLHIV’s psychological and physical well-being. HIV-related stigma is high in Turkey, where HIV/AIDS prevalence is low and the epidemic is not considered a priority. Based on qualitative data generated with HIV-positive women and men, this article explores the process of stigmatization, as experienced and perceived by PLHIV in Turkey, focusing on the institution of the family. Results indicated that enacted stigma from family members is lower than anticipated. While most participants’ narratives showed patterns of support rather than rejection from families, the strong expectations around the cultural value attributed to “the family” are found to be the main facilitators of internalized stigma. The article critically discusses the meaning and implications of family support, addressing the role of patriarchal values attributed to womanhood, manhood, and sexuality in Turkey

    Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review

    Get PDF
    Organic species are an important but poorly characterized constituent of airborne particulate matter. A quantitative understanding of the organic fraction of particles (organic aerosol, OA) is necessary to reduce some of the largest uncertainties that confound the assessment of the radiative forcing of climate and air quality management policies. In recent years, aerosol mass spectrometry has been increasingly relied upon for highly time-resolved characterization of OA chemistry and for elucidation of aerosol sources and lifecycle processes. Aerodyne aerosol mass spectrometers (AMS) are particularly widely used, because of their ability to quantitatively characterize the size-resolved composition of submicron particles (PM1). AMS report the bulk composition and temporal variations of OA in the form of ensemble mass spectra (MS) acquired over short time intervals. Because each MS represents the linear superposition of the spectra of individual components weighed by their concentrations, multivariate factor analysis of the MS matrix has proved effective at retrieving OA factors that offer a quantitative and simplified description of the thousands of individual organic species. The sum of the factors accounts for nearly 100% of the OA mass and each individual factor typically corresponds to a large group of OA constituents with similar chemical composition and temporal behavior that are characteristic of different sources and/or atmospheric processes. The application of this technique in aerosol mass spectrometry has grown rapidly in the last six years. Here we review multivariate factor analysis techniques applied to AMS and other aerosol mass spectrometers, and summarize key findings from field observations. Results that provide valuable information about aerosol sources and, in particular, secondary OA evolution on regional and global scales are highlighted. Advanced methods, for example a-priori constraints on factor mass spectra and the application of factor analysis to combined aerosol and gas phase data are discussed. Integrated analysis of worldwide OA factors is used to present a holistic regional and global description of OA. Finally, different ways in which OA factors can constrain global and regional models are discussed

    JPEG hardware accelerator design for FPGA [FPGA için JPEG donanimsal hizlandirici tasarimi]

    No full text
    A fully pipelined JPEG hardware accelerator that runs on FPGA is presented. The accelerator is designed interactively in a simulation environment, using a DSP hardware design automation tool chain. The encoder part of the accelerator accepts 8×8 image blocks in a streaming fashion, and outputs the zigzag-scanned, quantized 2-D DCT coefficients of the block. The decoder part accepts zigzag-scanned, quantized DCT coefficients, and outputs reconstructed 8×8 image block. Each part has a throughput of one system clock per pixel per channel. The encoder employs a fast pipelined implementation for 2-D DCT [1]. For the decoder, a new pipelined 2-D IDCT structure is developed. Our IDCT structure is based on an IDCT factorization for software implementation [2], and is inspired by the pipelined DCT structure employed in the encoder. The resource utilization and maximum frequency figures for a particular FPGA target suggest that our accelerator has competitive performance

    Proposition of a bubble-particle attachment model based on DLVO van der Waals and electric double layer interactions for froth flotation modelling

    No full text
    The attachment of bubbles and particles represents one of the sub-processes in froth flotation among others (e.g. collision and detachment). The main interactions present at short distances in such a bubble-particle system are the van der Waals and electrostatic double layer interactions combined in the DLVO theory. In this study, the special features of the attachment process were discussed with a focus on flotation. For the van der Waals interactions, the Hamaker constants were calculated with the help of Lifshitz´ macroscopic theory as a function of the separation distance for specific material combinations. A specific material system (PbS-Water-Air) was used to demonstrate the implementation of bubble-particle attachment of the proposed modelling framework. The effects of additional surfactant/collector and air layers on the solid interface were presented. This framework of layered systems showed that the sign of van der Waals interaction could be turned from repulsive to attractive without the need to extend the DLVO theory. The thickness of the layer as a function of collector adsorption between a particle and a bubble is suggested as a modelling parameter in bubble-particle attachment efficiency
    corecore