870 research outputs found
Photochemistry of the PAH pyrene in water ice: the case for ion-mediated solid-state astrochemistry
Context. Icy dust grains play an important role in the formation of complex
inter- and circumstellar molecules. Observational studies show that polycyclic
aromatic hydrocarbons (PAHs) are abundantly present in the ISM in the gas
phase. It is likely that these non-volatile species freeze out onto dust grains
as well and participate in the astrochemical solid-state network, but
experimental PAH ice studies are largely lacking. Methods. Near UV/VIS
spectroscopy is used to track the in situ VUV driven photochemistry of pyrene
containing ices at temperatures ranging from 10 to 125 K. Results. The main
photoproducts of VUV photolyzed pyrene ices are spectroscopically identified
and their band positions are listed for two host ices, \water and CO. Pyrene
ionisation is found to be most efficient in \water ices at low temperatures.
The reaction products, triplet pyrene and the 1-hydro-1-pyrenyl radical are
most efficiently formed in higher temperature water ices and in low temperature
CO ice. Formation routes and band strength information of the identified
species are discussed. Additionally, the oscillator strengths of Py, Py^+ and
PyH are derived and a quantitative kinetic analysis is performed by fitting a
chemical reaction network to the experimental data. Conclusions. Pyrene is
efficiently ionised in water ice at temperatures below 50 K. Hydrogenation
reactions dominate the chemistry in low temperature CO ice with trace amounts
of water. The results are put in an astrophysical context by determining the
importance of PAH ionisation in a molecular cloud. The photoprocessing of a
sample PAH in ice described in this manuscript indicates that PAH
photoprocessing in the solid state should also be taken into account in
astrochemical models.Comment: 11 pages, 8 figures, accepted for publication in A&
Laboratory H2O:CO2 ice desorption data: entrapment dependencies and its parameterization with an extended three-phase model
Ice desorption affects the evolution of the gas-phase chemistry during the
protostellar stage, and also determines the chemical composition of comets
forming in circumstellar disks. From observations, most volatile species are
found in H2O-dominated ices. The aim of this study is first to experimentally
determine how entrapment of volatiles in H2O ice depends on ice thickness,
mixture ratio and heating rate, and second, to introduce an extended
three-phase model (gas, ice surface and ice mantle) to describe ice mixture
desorption with a minimum number of free parameters. Thermal H2O:CO2 ice
desorption is investigated in temperature programmed desorption experiments of
thin (10 - 40 ML) ice mixtures under ultra-high vacuum conditions. Desorption
is simultaneously monitored by mass spectrometry and reflection-absorption
infrared spectroscopy. The H2O:CO2 experiments are complemented with selected
H2O:CO, and H2O:CO2:CO experiments. The results are modeled with rate equations
that connect the gas, ice surface and ice mantle phases through surface
desorption and mantle-surface diffusion. The fraction of trapped CO2 increases
with ice thickness (10 - 32 ML) and H2O:CO2 mixing ratio (5:1 - 10:1), but not
with one order of magnitude different heating rates. The fraction of trapped
CO2 is 44 - 84 % with respect to the initial CO2 content for the investigated
experimental conditions. This is reproduced quantitatively by the extended
three-phase model that is introduced here. The H2O:CO and H2O:CO2:CO
experiments are consistent with the H2O:CO2 desorption trends, suggesting that
the model can be used for other ice species found in the interstellar medium to
significantly improve the parameterization of ice desorption.Comment: 12 pages, 9 figures, published in A&
Quantification of segregation dynamics in ice mixtures
(Abridged) The observed presence of pure CO2 ice in protostellar envelopes is
attributed to thermally induced ice segregation, but a lack of quantitative
experimental data has prevented its use as a temperature probe. Quantitative
segregation studies are also needed to characterize diffusion in ices, which
underpins all ice dynamics and ice chemistry. This study aims to quantify the
segregation mechanism and barriers in different H2O:CO2 and H2O:CO ice mixtures
covering a range of astrophysically relevant ice thicknesses and mixture
ratios. The ices are deposited at 16-50 K under (ultra-)high vacuum conditions.
Segregation is then monitored at 23-70 K as a function of time, through
infrared spectroscopy. Thin (8-37 ML) H2O:CO2/CO ice mixtures segregate
sequentially through surface processes, followed by an order of magnitude
slower bulk diffusion. Thicker ices (>100 ML) segregate through a fast bulk
process. The thick ices must therefore be either more porous or segregate
through a different mechanism, e.g. a phase transition. The segregation
dynamics of thin ices are reproduced qualitatively in Monte Carlo simulations
of surface hopping and pair swapping. The experimentally determined
surface-segregation rates for all mixture ratios follow the Ahrrenius law with
a barrier of 1080[190] K for H2O:CO2 and 300[100] K for H2O:CO mixtures. During
low-mass star formation H2O:CO2 segregation will be important already at 30[5]
K. Both surface and bulk segregation is proposed to be a general feature of ice
mixtures when the average bond strengths of the mixture constituents in pure
ice exceeds the average bond strength in the ice mixture.Comment: Accepted for publication in A&A. 25 pages, including 13 figure
Water formation at low temperatures by surface O2 hydrogenation II: the reaction network
Water is abundantly present in the Universe. It is the main component of
interstellar ice mantles and a key ingredient for life. Water in space is
mainly formed through surface reactions. Three formation routes have been
proposed in the past: hydrogenation of surface O, O2, and O3. In a previous
paper [Ioppolo et al., Astrophys. J., 2008, 686, 1474] we discussed an
unexpected non-standard zeroth-order H2O2 production behaviour in O2
hydrogenation experiments, which suggests that the proposed reaction network is
not complete, and that the reaction channels are probably more interconnected
than previously thought. In this paper we aim to derive the full reaction
scheme for O2 surface hydrogenation and to constrain the rates of the
individual reactions. This is achieved through simultaneous H-atom and O2
deposition under ultra-high vacuum conditions for astronomically relevant
temperatures. Different H/O2 ratios are used to trace different stages in the
hydrogenation network. The chemical changes in the forming ice are followed by
means of reflection absorption infrared spectroscopy (RAIRS). New reaction
paths are revealed as compared to previous experiments. Several reaction steps
prove to be much more efficient (H + O2) or less efficient (H + OH and H2 + OH)
than originally thought. These are the main conclusions of this work and the
extended network concluded here will have profound implications for models that
describe the formation of water in space.Comment: 1 page, 1 figur
Disk Imaging Survey of Chemistry with SMA: II. Southern Sky Protoplanetary Disk Data and Full Sample Statistics
This is the second in a series of papers based on data from DISCS, a
Submillimeter Array observing program aimed at spatially and spectrally
resolving the chemical composition of 12 protoplanetary disks. We present data
on six Southern sky sources - IM Lup, SAO 206462 (HD 135344b), HD 142527, AS
209, AS 205 and V4046 Sgr - which complement the six sources in the Taurus star
forming region reported previously. CO 2-1 and HCO+ 3-2 emission are detected
and resolved in all disks and show velocity patterns consistent with Keplerian
rotation. Where detected, the emission from DCO+ 3-2, N2H+ 3-2, H2CO 3-2 and
4-3,HCN 3-2 and CN 2-1 are also generally spatially resolved. The detection
rates are highest toward the M and K stars, while the F star SAO 206462 has
only weak CN and HCN emission, and H2CO alone is detected toward HD 142527.
These findings together with the statistics from the previous Taurus disks,
support the hypothesis that high detection rates of many small molecules depend
on the presence of a cold and protected disk midplane, which is less common
around F and A stars compared to M and K stars. Disk-averaged variations in the
proposed radiation tracer CN/HCN are found to be small, despite two orders of
magnitude range of spectral types and accretion rates. In contrast, the
resolved images suggest that the CN/HCN emission ratio varies with disk radius
in at least two of the systems. There are no clear observational differences in
the disk chemistry between the classical/full T Tauri disks and transitional
disks. Furthermore, the observed line emission does not depend on measured
accretion luminosities or the number of infrared lines detected, which suggests
that the chemistry outside of 100 AU is not coupled to the physical processes
that drive the chemistry in the innermost few AU.Comment: accepted for publication in ApJ, 41 pages including 7 figure
Fly-The-Bee: A Game Imitating Concept Learning in Bees
AbstractThis article presents a web-based game functionally imitating a part of the cognitive behavior of a living organism. This game is a prototype implementation of an artificial online cognitive architecture based on the usage of distributed data representations and Vector Symbolic Architectures. The game demonstrates the feasibility of creating a lightweight cognitive architecture, which is capable of performing rather complex cognitive tasks. The cognitive functionality is implemented in about 100 lines of code and requires few tens of kilobytes of memory for its operation, which make the concept suitable for implementing in low-end devices such as minirobots and wireless sensors
Teachers, researchers, but not innovators? Rethinking university-industry collaboration
Purpose: Universities, when collaborating with industry, are generally assumed to be the motors for innovation. Inspired by a case on a university’s collaboration with small- and medium-sized enterprises (SMEs) in a regional strategic network (RSN), this paper aims to put forth how the university makes important contributions through transferring knowledge on innovation processes that is a teaching role, rather than sees itself as the party producing innovations. This paper describes and discusses the university’s teaching role and its consequences in university-industry collaborations for innovation. Design/methodology/approach: Empirically, the paper departs from a mid-Swedish RSN where nine SMEs started to work with a university. Interviews with representatives of the nine SMEs participating in the innovation project, along with university and RSN representatives, comprise the main data source. The paper analyzes the university’s teaching role and the consequences of it. Findings: Findings point at how the SMEs developed structured innovation processes, improved their market intelligence and increased their efficiency in providing new solutions. The university facilitated knowledge, while the SMEs responded through creating knowledge both on how to innovate and in terms of innovations. Originality/value: The teaching role, which would mean that the university stays with one of its core functions, indicates a need to rethink university-industry collaboration related to expectations and role division. Moving from producing innovations to facilitating knowledge on how to innovate, would, for universities, mean that they minimize those conflicts emerging from their various roles and indicate that the production of innovation is placed at those devoted to run and grow businesses
Gender Disparities in Top Earnings:Measurement and Facts for Denmark 1980-2013
Extending the work of Atkinson et al. (J. Econ. Inequal. 16, 225-256, 2018), we decompose top-earnings gender disparities into a glass-ceiling coefficient and a top-earnings gender gap. The decomposition uses that both male and female top earnings are Pareto distributed. If interpreting top-earnings gender disparities as caused by a female-specific earnings tax, the top-earnings gender gap and glass-ceiling coefficient measure the tax level and tax progressivity, respectively. Using Danish data on earnings, we show that the top-earnings gender gap and the glass-ceiling coefficient evolve differently across time, the life cycle, and educational groups. In particular, while the top-earnings gender gap has been decreasing in Denmark over the period 1980-2013, the glass-ceiling coefficient has been remarkably stable
Desorption of CO and O2 interstellar ice analogs
Solid O2 has been proposed as a possible reservoir for oxygen in dense clouds
through freeze-out processes. The aim of this work is to characterize
quantitatively the physical processes that are involved in the desorption
kinetics of CO-O2 ices by interpreting laboratory temperature programmed
desorption (TPD) data. This information is used to simulate the behavior of
CO-O2 ices under astrophysical conditions. The TPD spectra have been recorded
under ultra high vacuum conditions for pure, layered and mixed morphologies for
different thicknesses, temperatures and mixing ratios. An empirical kinetic
model is used to interpret the results and to provide input parameters for
astrophysical models. Binding energies are determined for different ice
morphologies. Independent of the ice morphology, the desorption of O2 is found
to follow 0th-order kinetics. Binding energies and temperature-dependent
sticking probabilities for CO-CO, O2-O2 and CO-O2 are determined. O2 is
slightly less volatile than CO, with binding energies of 912+-15 versus 858+-15
K for pure ices. In mixed and layered ices, CO does not co-desorb with O2 but
its binding energies are slightly increased compared with pure ice whereas
those for O2 are slightly decreased. Lower limits to the sticking probabilities
of CO and O2 are 0.9 and 0.85, respectively, at temperatures below 20K. The
balance between accretion and desorption is studied for O2 and CO in
astrophysically relevant scenarios. Only minor differences are found between
the two species, i.e., both desorb between 16 and 18K in typical environments
around young stars. Thus, clouds with significant abundances of gaseous CO are
unlikely to have large amounts of solid O2.Comment: 8 pages + 2 pages online material, 8 figures (1 online), accepted by
A&
Spectrally-resolved UV photodesorption of CH4 in pure and layered ices
Context. Methane is among the main components of the ice mantles of
insterstellar dust grains, where it is at the start of a rich solid-phase
chemical network. Quantification of the photon-induced desorption yield of
these frozen molecules and understanding of the underlying processes is
necessary to accurately model the observations and the chemical evolution of
various regions of the interstellar medium. Aims. This study aims at
experimentally determining absolute photodesorption yields for the CH4 molecule
as a function of photon energy. The influence of the ice composition is also
investigated. By studying the methane desorption from layered CH4:CO ice,
indirect desorption processes triggered by the excitation of the CO molecules
is monitored and quantified. Methods. Tunable monochromatic VUV light from the
DESIRS beamline of the SOLEIL synchrotron is used in the 7 - 13.6 eV (177 - 91
nm) range to irradiate pure CH4 or layers of CH4 deposited on top of CO ice
samples. The release of species in the gas phase is monitored by quadrupole
mass spectrometry and absolute photodesorption yields of intact CH4 are
deduced. Results. CH4 photodesorbs for photon energies higher than ~9.1 eV
(~136 nm). The photodesorption spectrum follows the absorption spectrum of CH4,
which confirms a desorption mechanism mediated by electronic transitions in the
ice. When it is deposited on top of CO, CH4 desorbs between 8 and 9 eV with a
pattern characteristic of CO absorption, indicating desorption induced by
energy transfer from CO molecules. Conclusions. The photodesorption of CH4 from
the pure ice in various interstellar environments is around 2.0 x 10^-3
molecules per incident photon. Results on CO-induced indirect desorption of CH4
provide useful insights for the generalization of this process to other
molecules co-existing with CO in ice mantles
- …