6 research outputs found

    Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow

    Get PDF
    Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption.We usemultiparameter geophysical and geochemical data to show that the 110-squarekilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, nearexponential decline of both collapse rate and the intensity of the 180-day-long eruption

    A volcano's sharp intake of breath

    No full text

    Deformation and seismicity decline before the 2021 Fagradalsfjall eruption

    No full text
    Increased rates of deformation and seismicity are well-established precursors to volcanic eruptions, and their interpretation forms the basis for eruption warnings worldwide. Rates of ground displacement and the number of earthquakes escalate before many eruptions1,2,3, as magma forces its way towards the surface. However, the pre-eruptive patterns of deformation and seismicity vary widely. Here we show how an eruption beginning on 19 March 2021 at Fagradalsfjall, Iceland, was preceded by a period of tectonic stress release ending with a decline in deformation and seismicity over several days preceding the eruption onset. High rates of deformation and seismicity occurred from 24 February to mid-March in relation to gradual emplacement of an approximately 9-km-long magma-filled dyke, between the surface and 8 km depth (volume approximately 34 × 106 m3), as well as the triggering of strike-slip earthquakes up to magnitude MW 5.64. As stored tectonic stress was systematically released, there was less lateral migration of magma and a reduction in both the deformation rates and seismicity. Weaker crust near the surface may also have contributed to reduced seismicity, as the depth of active magma emplacement progressively shallowed. This demonstrates that the interaction between volcanoes and tectonic stress as well as crustal layering need to be fully considered when forecasting eruptions

    Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption

    No full text
    Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallaj kull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18-years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5-mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a km 3 magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magmaice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallaj's behaviour can be attributed to its off-rift setting with a subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect

    Volcanoes in Iceland and Crustal Deformation Processes

    No full text
    corecore