58 research outputs found

    Random X Inactivation and Extensive Mosaicism in Human Placenta Revealed by Analysis of Allele-Specific Gene Expression along the X Chromosome

    Get PDF
    Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals

    Ant Community Evolution According to Aging in Brazilian Cocoa Tree Plantations

    Get PDF
    Agriculture is frequently held accountable for the depletion of biotic diversity, although a few agroforestry systems support the conservation of a number of organisms. Cocoa farming is noteworthy as an example of an agricultural activity that benefits or maintains species richness. However, the mechanism by which the biodiversity persists throughout the entire process of plant development remains obscure. In Southeastern Bahia, Brazil, cacao tree plantations support the conservation of a large amount of organisms native to the Atlantic Forest, between them the ants. This study aims at recording the relationship between cocoa tree development and ant community structure. The experiment was carried out in a series of six cocoa tree plantations aged one, three, four, eight, fifteen and 33 years, distributed across the experimental grounds of the Cocoa Research Center at Ilhéus. 1,500 ant samples were collected using the sampling techniques: hand collection, honey and sardine baits, entomological blanket and “pitfall”. Highest values for diversity and richness were reported in the 15-years-old cocoa plantation. No significant correlations between diversity, richness or plant age were reported. Considering the faunistic composition, a statistical similarity was observed between the plantations close in age to one another. Plant aging did not exert any influence on the diversity gradient and richness in the succession process of the ant community. In young plantations, there are low differences between the ants found on the ground and the ones found on the young cocoa trees. In older plantations, the ant community divides in two distinct assemblages on the ground and on the trees. The variations observed in the ant community along the plant development were likely caused by the structural organization of the dominant species mosaic

    A SARS-CoV-2 Negative Antigen Rapid Diagnostic in RT-qPCR Positive Samples Correlates With a Low Likelihood of Infectious Viruses in the Nasopharynx

    Get PDF
    Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) transmission occurs even among fully vaccinated individuals; thus, prompt identification of infected patients is central to control viral circulation. Antigen rapid diagnostic tests (Ag-RDTs) are highly specific, but sensitivity is variable. Discordant RT-qPCR vs. Ag-RDT results are reported, raising the question of whether negative Ag-RDT in positive RT-qPCR samples could imply the absence of infectious viruses. To study the relationship between negative Ag-RDT results with virological, molecular, and serological parameters, we selected a cross-sectional and a follow-up dataset and analyzed virus culture, subgenomic RNA quantification, and sequencing to determine infectious viruses and mutations. We demonstrated that RT-qPCR positive while SARS-CoV-2 Ag-RDT negative discordant results correlate with the absence of infectious virus in nasopharyngeal samples. A decrease in sgRNA detection together with an expected increase in detectable anti-S and anti-N IgGs was also verified in these samples. The data clearly demonstrate that a negative Ag-RDT sample is less likely to harbor infectious SARS-CoV-2 and, consequently, has a lower transmissible potential
    corecore