31 research outputs found

    Spin ice thin films: Large-N theory and Monte Carlo simulations

    Full text link
    We explore the physics of highly frustrated magnets in confined geometries, focusing on the Coulomb phase of pyrochlore spin ices. As a specific example, we investigate thin films of nearest-neighbor spin ice, using a combination of analytic large-N techniques and Monte Carlo simulations. In the simplest film geometry, with surfaces perpendicular to the [001] crystallographic direction, we observe pinch points in the spin-spin correlations characteristic of a two-dimensional Coulomb phase. We then consider the consequences of crystal symmetry breaking on the surfaces of the film through the inclusion of orphan bonds. We find that when these bonds are ferromagnetic, the Coulomb phase is destroyed by the presence of fluctuating surface magnetic charges, leading to a classical Z_2 spin liquid. Building on this understanding, we discuss other film geometries with surfaces perpendicular to the [110] or the [111] direction. We generically predict the appearance of surface magnetic charges and discuss their implications for the physics of such films, including the possibility of an unusual Z_3 classical spin liquid. Finally, we comment on open questions and promising avenues for future research.Comment: 17 pages, 11 figures. Minor improvements, typos correcte

    Dynamical and anharmonic effects on the electron-phonon coupling and the zero-point renormalization of the electronic structure

    Full text link
    The renormalization of the band structure at zero temperature due to electron-phonon coupling is investigated in diamond, BN, LiF and MgO crystals. We implement a dynamical scheme to compute the frequency-dependent self-energy and the resulting quasiparticle electronic structure. Our calculations reveal the presence of a satellite band below the Fermi level of LiF and MgO. We show that the renormalization factor (Z), which is neglected in the adiabatic approximation, can reduce the zero-point renormalization (ZPR) by as much as 40%. Anharmonic effects in the renormalized eigenvalues at finite atomic displacements are explored with the frozen-phonon method. We use a non-perturbative expression for the ZPR, going beyond the Allen-Heine-Cardona theory. Our results indicate that high-order electron-phonon coupling terms contribute significantly to the zero-point renormalization for certain materials

    Traversable wormhole and Hawking-Page transition in coupled complex SYK models

    Full text link
    Recent work has shown that coupling two identical Sachdev-Ye-Kitaev (SYK) models can realize a phase of matter that is holographically dual to an \emph{eternal traversable wormhole}. This phase supports revival oscillations between two quantum chaotic systems that can be interpreted as information traversing the wormhole. Here we generalize these ideas to a pair of coupled SYK models with {\em complex} fermions that respect a global U(1) charge symmetry. Such models show richer behavior than conventional SYK models with Majorana fermions and may be easier to realize experimentally. We consider two different couplings, namely tunneling and charge-conserving two-body interactions, and obtain the corresponding phase diagram using a combination of numerical and analytical techniques. At low temperature we find a charge-neutral gapped phase that supports revival oscillations, with a ground state close to the thermofield double, which we argue is dual to a traversable wormhole. We also find two different gapless non-Fermi liquid phases with tunable charge density which we interpret as dual to a `large' and `small' charged black hole. The gapped and gapless phases are separated by a first-order phase transition of the Hawking-Page type. Finally, we discuss an SU(2)-symmetric limit of our model that is closely related to proposed realizations of SYK physics with spinful fermions in graphene, and explain its relevance for future experiments on this system.Comment: 13 pages, 13 figure

    Andreev reflection spectroscopy in strongly paired superconductors

    Full text link
    Motivated by recent experiments on low-carrier-density superconductors, including twisted multilayer graphene, we study signatures of the BCS to BEC evolution in Andreev reflection spectroscopy. We establish that in a standard quantum point contact geometry, Andreev reflection in a BEC superconductor is unable to mediate a zero-bias conductance beyond e2/he^2/h per lead channel. This bound is shown to result from a duality that links the sub-gap conductance of BCS and BEC superconductors. We then demonstrate that sharp signatures of BEC superconductivity, including perfect Andreev reflection, can be recovered by tunneling through a suitably designed potential well. We propose various tunneling spectroscopy setups to experimentally probe this recovery.Comment: 13 pages, 8 figure
    corecore