5 research outputs found
Re-purposing the pro-senescence properties of doxorubicin to introduce immunotherapy in breast cancer brain metastasis
An increasing number of breast cancer patients develop brain metastases (BM). Standard-of-care treatments are largely inefficient, and breast cancer brain metastasis (BCBM) patients are considered untreatable. Immunotherapies are not successfully employed in BCBM, in part because breast cancer is a “cold” tumor and also because the brain tissue has a unique immune landscape. Here, we generate and characterize immunocompetent models of BCBM derived from PyMT and Neu mammary tumors to test how harnessing the pro-senescence properties of doxorubicin can be used to prime the specific immune BCBM microenvironment. We reveal that BCBM senescent cells, induced by doxorubicin, trigger the recruitment of PD1-expressing T cells to the brain. Importantly, we demonstrate that induction of senescence with doxorubicin improves the efficacy of immunotherapy with anti-PD1 in BCBM in a CD8 T cell-dependent manner, thereby providing an optimized strategy to introduce immune-based treatments in this lethal disease. In addition, our BCBM models can be used for pre-clinical testing of other therapeutic strategies in the future
ABCB1 Attenuates the Brain Penetration of the PARP Inhibitor AZD2461
Poly (ADP-ribose) polymerase (PARP) inhibitors are a relatively new class of anticancer agents that have attracted attention for treatment of glioblastoma because of their ability to potentiate temozolomide chemotherapy. Previous studies have demonstrated that sufficient brain penetration is a prerequisite for efficacy of PARP inhibitors in glioma mouse models. Unfortunately, however, most of the PARP inhibitors developed to date have a limited brain penetration due to the presence of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) at the blood-brain barrier. AZD2461 is a novel PARP inhibitor that is unaffected by P-gp mediated resistance in breast cancer models and thus appears to have promising characteristics for brain penetration. We here use a comprehensive set of in vitro and in vivo models to study the brain penetration and oral bioavailability of AZD2461. We report that AZD2461 has a good membrane permeability. However, it is a substrate of P-gp and BCRP, and P-gp in particular limits its brain penetration in vivo. We show that AZD2461 has a low oral bioavailability, although it is not affected by P-gp and BCRP. Together, these findings are not in favor of further development of AZD2461 for treatment of glioblastoma
ABCB1 Attenuates the Brain Penetration of the PARP Inhibitor AZD2461
Poly (ADP-ribose) polymerase (PARP) inhibitors are a relatively new class of anticancer agents that have attracted attention for treatment of glioblastoma because of their ability to potentiate temozolomide chemotherapy. Previous studies have demonstrated that sufficient brain penetration is a prerequisite for efficacy of PARP inhibitors in glioma mouse models. Unfortunately, however, most of the PARP inhibitors developed to date have a limited brain penetration due to the presence of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) at the blood-brain barrier. AZD2461 is a novel PARP inhibitor that is unaffected by P-gp mediated resistance in breast cancer models and thus appears to have promising characteristics for brain penetration. We here use a comprehensive set of in vitro and in vivo models to study the brain penetration and oral bioavailability of AZD2461. We report that AZD2461 has a good membrane permeability. However, it is a substrate of P-gp and BCRP, and P-gp in particular limits its brain penetration in vivo. We show that AZD2461 has a low oral bioavailability, although it is not affected by P-gp and BCRP. Together, these findings are not in favor of further development of AZD2461 for treatment of glioblastoma
Buparlisib is a brain penetrable pan-PI3K inhibitor
Characterization of the genomic landscapes of intracranial tumours has revealed a clear role for the PI3K-AKT-mTOR pathway in tumorigenesis and tumour maintenance of these malignancies, making phosphatidylinositol 3-kinase (PI3K) inhibition a promising therapeutic strategy for these tumours. Buparlisib is a novel pan-PI3K inhibitor that is currently in clinical development for various cancers, including primary and secondary brain tumours. Importantly however, earlier studies have revealed that sufficient brain penetration is a prerequisite for antitumor efficacy against intracranial tumours. We therefore investigated the brain penetration of buparlisib using a comprehensive set of in vitro and in vivo mouse models. We demonstrate that buparlisib has an excellent brain penetration that is unaffected by efflux transporters at the blood-brain barrier, complete oral bioavailability and efficient intracranial target inhibition at clinically achievable plasma concentrations. Together, these characteristics make buparlisib the ideal candidate for intracranially-targeted therapeutic strategies that involve PI3K inhibition
ATP-binding cassette transporters restrict drug delivery and efficacy against brain tumors even when blood-brain barrier integrity is lost
Whether a compromised blood-brain barrier hinders the drug treatment of intracranial tumors remains controversial. de Gooijer et al. determine how drug transporters affect the efficacy of docetaxel against several intracranial tumor models with various levels of blood-brain barrier integrity and show that ABC transporters can restrict drug efficacy even when tumor vessels are leaky