10,818 research outputs found

    The chloroplast of chlamydomonas reinhardtii as a testbed for engineering nitrogen fixation into plants

    Get PDF
    Eukaryotic organisms such as plants are unable to utilise nitrogen gas (N2) directly as a source of this essential element and are dependent either on its biological conversion to ammonium by diazotrophic prokaryotes, or its supply as chemically synthesised nitrate fertiliser. The idea of genetically engineering crops with the capacity to fix N2 by introduction of the bacterial nitrogenase enzyme has long been discussed. However, the expression of an active nitrogenase must overcome several major challenges: the coordinated expression of multiple genes to assemble an enzyme complex containing several different metal cluster co-factors; the supply of sufficient ATP and reductant to the enzyme; the enzyme’s sensitivity to oxygen; and the intracellular accumulation of ammonium. The chloroplast of plant cells represents an attractive location for nitrogenase expression, but engineering the organelle’s genome is not yet feasible in most crop species. However, the unicellular green alga Chlamydomonas reinhardtii represents a simple model for photosynthetic eukaryotes with a genetically tractable chloroplast. In this review, we discuss the main advantages, and limitations, of this microalga as a testbed for producing such a complex multi-subunit enzyme. Furthermore, we suggest that a minimal set of six transgenes are necessary for chloroplast-localised synthesis of an ‘Fe-only’ nitrogenase, and from this set we demonstrate the stable expression and accumulation of the homocitrate synthase, NifV, under aerobic conditions. Arguably, further studies in C. reinhardtii aimed at testing expression and function of the full gene set would provide the groundwork for a concerted future effort to create nitrogen-fixing crops

    Optimal streaks in a Falkner-Skan boundary layer

    Full text link
    This paper deals with the optimal streaky perturbations (which maximize the perturbed energy growth) in a wedge flow boundary layer. These three dimensional perturbations are governed by a system of linearized boundary layer equations around the Falkner-Skan base flow. Based on an asymptotic analysis of this system near the free stream and the leading edge singularity, we show that for acute wedge semi-angle, all solutions converge after a streamwise transient to a single streamwise-growing solution of the linearized equations, whose initial condition near the leading edge is given by an eigenvalue problem first formulated in this context by Tumin (2001). Such a solution may be regarded as a streamwise evolving most unstable streaky mode, in analogy with the usual eigenmodes in strictly parallel flows, and shows an approximate self-similarity, which was partially known and is completed in this paper. An important consequence of this result is that the optimization procedure based on the adjoint equations heretofore used to define optimal streaks is not necessary. Instead, a simple low-dimensional optimization process is proposed and used to obtain optimal streaks. Comparison with previous results by Tumin and Ashpis (2003) shows an excellent agreement. The unstable streaky mode exhibits transient growth if the wedge semi-angle is smaller than a critical value that is slightly larger than π/6\pi/6, and decays otherwise. Thus the cases of right and obtuse wedge semi-angles exhibit less practical interest, but they show a qualitatively different behavior, which is briefly described to complete the analysis

    NMR quantum simulation of localization effects induced by decoherence

    Full text link
    The loss of coherence in quantum mechanical superposition states limits the time for which quantum information remains useful. Similarly, it limits the distance over which quantum information can be transmitted, resembling Anderson localization, where disorder causes quantum mechanical states to become localized. Here, we investigate in a nuclear spin-based quantum simulator, the localization of the size of spin clusters that are generated by a Hamiltonian driving the transmission of information, while a variable-strength perturbation counteracts the spreading. We find that the system reaches a dynamic equilibrium size, which decreases with the square of the perturbation strength.Comment: 5 pages, 5 figure

    Amplificación sísmica: Una aproximación por Elementos Finitos

    Get PDF
    En las páginas que siguen se presenta el estudio de uno de los más típicos problemas de dinámica estructural, cual es la obtención de la respuesta de una estructura excitada por un movimiento de la base. Este es un caso muy frecuente en ingeniería sísmica, donde el objeto del estudio puede ser el edificio (sometido a un movimiento en la cimentación) o un estrato de terreno sobre fondo rígido. Al objeto de facilitar un soporte intuitivo a la exposicióri, ésta se organiza en base al segundo de los casos citados (estrate en base rígida). La aproximación escogida, elementos finitos, pone de relieve una vez más la potencia y generalidad del método en lo que respecta a la formulación del sistema de equilibrio. La discusión se centra en un aspecto concreto del método: la elección de funciones de forma.The goal of this paper is to present the analysis of one of the most typical problems in dynamics: the response of a structure excited by a rigid-base motion. This is an usual case in seismic engineering, where the structure can be a building or a soil stratum lying on a rigid bed. In both cases the model will be the same but, in order to give a physical support to exposure, the later will be treated. The choosed approach, by finite elements, points up the power and the generality of that method with respect to equilibrium formulation. Emphasis is done over the choosing of shape functions.Peer Reviewe

    Time-dependent quantum scattering in 2+1 dimensional gravity

    Full text link
    The propagation of a localized wave packet in the conical space-time created by a pointlike massive source in 2+1 dimensional gravity is analyzed. The scattering amplitude is determined and shown to be finite along the classical scattering directions due to interference between the scattered and the transmitted wave functions. The analogy with diffraction theory is emphasized.Comment: 15 pages in LaTeX with 3 PostScript figure

    On balancedness and D-Completeness of the space of Semi-lipschitz functions

    Get PDF
    Let (X, d) be a quasi-metric space and (Y, q) be a quasi-normed linear space. We show that the normed cone of semi-Lipschitz functions from (X, d) to (Y, q) that vanish at a point x0 E X, is balanced. Moreover, it is complete in the sense of D. Doitchinov whenever (Y, q) is a biBanach spac

    Recurrence of the blue wing enhancements in the high ionization lines of SDSS 1004+4112 A

    Get PDF
    We present integral field spectroscopic observations of the quadruple-lensed QSO SDSS 1004+4112 taken with the fiber system INTEGRAL at the William Herschel Telescope on 2004 January 19. In May 2003 a blueward enhancement in the high ionization lines of SDSS 1004+4112A was detected and then faded. Our observations are the first to note a second event of similar characteristics less than one year after. Although initially attributed to microlensing, the resemblance among the spectra of both events and the absence of microlensing-induced changes in the continuum of component A are puzzling. The lack of a convincing explanation under the microlensing or intrinsic variability hypotheses makes the observed enhancements particularly relevant, calling for close monitoring of this object.Comment: 4 pages, 5 figure
    corecore