13,926 research outputs found

    Coupled equations for Kähler metrics and Yang-Mills connections

    No full text
    We study equations on a principal bundle over a compact complex manifold coupling a connection on the bundle with a Kahler structure on the base. These equations generalize the conditions of constant scalar curvature for a Kahler metric and Hermite-Yang-Mills for a connection. We provide a moment map interpretation of the equations and study obstructions for the existence of solutions, generalizing the Futaki invariant, the Mabuchi K-energy and geodesic stability. We finish by giving some examples of solutions.Comment: 61 pages; v2: introduction partially rewritten; minor corrections and improvements in presentation, especially in Section 4; added references; v3: To appear in Geom. Topol. Minor corrections and improvements, following comments by referee

    The Stationary Phase Method for a Wave Packet in a Semiconductor Layered System. The applicability of the method

    Full text link
    Using the formal analysis made by Bohm in his book, {\em "Quantum theory"}, Dover Publications Inc. New York (1979), to calculate approximately the phase time for a transmitted and the reflected wave packets through a potential barrier, we calculate the phase time for a semiconductor system formed by different mesoscopic layers. The transmitted and the reflected wave packets are analyzed and the applicability of this procedure, based on the stationary phase of a wave packet, is considered in different conditions. For the applicability of the stationary phase method an expression is obtained in the case of the transmitted wave depending only on the derivatives of the phase, up to third order. This condition indicates whether the parameters of the system allow to define the wave packet by its leading term. The case of a multiple barrier systems is shown as an illustration of the results. This formalism includes the use of the Transfer Matrix to describe the central stratum, whether it is formed by one layer (the single barrier case), or two barriers and an inner well (the DBRT system), but one can assume that this stratum can be comprise of any number or any kind of semiconductor layers.Comment: 15 pages, 4 figures although figure 4 has 5 graph

    Housing cycles in the major euro area countries.

    Get PDF
    The recent burst of the house price bubble in the United States and its spillover effects on real economies worldwide has rekindled the interest in the role of housing in the business cycle. In this paper, we investigate the relationships between housing cycles among the four major euro area countries (Germany, France, Italy and Spain) over the sample 1980q1 – 2008q4. Our main findings are that GDP cycles between 1.5 and 8 years show a high degree of comovement across these four countries, reflecting trade linkages. In contrast comovements in housing market cycles between 1.5 and 8 years are much weaker, idiosyncratic factors playing a major role. House prices are even less related across countries than quantities (residential investment, building permits, housing starts …). We find however much stronger relationships since 1999, i.e. in the common monetary policy period.Housing cycles, synchronisation measures, euro area countries.

    Rudiments of Holography

    Full text link
    An elementary introduction to Maldacena's AdS/CFT correspondence is given, with some emphasis in the Fefferman-Graham construction. This is based on lectures given by one of us (E.A.) at the Universidad Autonoma de Madrid.Comment: 60 pages, additional misprints corrected, references adde

    Effect of deformation on two-neutrino double beta decay matrix elements

    Full text link
    We study the effect of deformation on the two-neutrino double beta decay for ground state to ground state transitions in all the nuclei whose half-lives have been measured. Our theoretical framework is a deformed QRPA based in Woods-Saxon or Hartree-Fock mean fields. We are able to reproduce at the same time the main characteristics of the two single beta branches, as well as the double beta matrix elements. We find a suppression of the double beta matrix element with respect to the spherical case when the parent and daughter nuclei have different deformations
    corecore