1,617 research outputs found
A strongly polynomial algorithm for generalized flow maximization
A strongly polynomial algorithm is given for the generalized flow
maximization problem. It uses a new variant of the scaling technique, called
continuous scaling. The main measure of progress is that within a strongly
polynomial number of steps, an arc can be identified that must be tight in
every dual optimal solution, and thus can be contracted. As a consequence of
the result, we also obtain a strongly polynomial algorithm for the linear
feasibility problem with at most two nonzero entries per column in the
constraint matrix.Comment: minor correction
Approximating Minimum Cost Connectivity Orientation and Augmentation
We investigate problems addressing combined connectivity augmentation and
orientations settings. We give a polynomial-time 6-approximation algorithm for
finding a minimum cost subgraph of an undirected graph that admits an
orientation covering a nonnegative crossing -supermodular demand function,
as defined by Frank. An important example is -edge-connectivity, a
common generalization of global and rooted edge-connectivity.
Our algorithm is based on a non-standard application of the iterative
rounding method. We observe that the standard linear program with cut
constraints is not amenable and use an alternative linear program with
partition and co-partition constraints instead. The proof requires a new type
of uncrossing technique on partitions and co-partitions.
We also consider the problem setting when the cost of an edge can be
different for the two possible orientations. The problem becomes substantially
more difficult already for the simpler requirement of -edge-connectivity.
Khanna, Naor, and Shepherd showed that the integrality gap of the natural
linear program is at most when and conjectured that it is constant
for all fixed . We disprove this conjecture by showing an
integrality gap even when
- …