2,982 research outputs found

    Stochastic integration based on simple, symmetric random walks

    Full text link
    A new approach to stochastic integration is described, which is based on an a.s. pathwise approximation of the integrator by simple, symmetric random walks. Hopefully, this method is didactically more advantageous, more transparent, and technically less demanding than other existing ones. In a large part of the theory one has a.s. uniform convergence on compacts. In particular, it gives a.s. convergence for the stochastic integral of a finite variation function of the integrator, which is not c\`adl\`ag in general.Comment: 16 pages, some typos correcte

    On the role of conformal three-geometries in the dynamics of General Relativity

    Full text link
    It is shown that the Chern-Simons functional, built in the spinor representation from the initial data on spacelike hypersurfaces, is invariant with respect to infinitesimal conformal rescalings if and only if the vacuum Einstein equations are satisfied. As a consequence, we show that in the phase space the Hamiltonian constraint of vacuum general relativity is the Poisson bracket of the imaginary part of this Chern-Simons functional and Misner's time (essentially the 3-volume). Hence the vacuum Hamiltonian constraint is the condition on the canonical variables that the imaginary part of the Chern- Simons functional be constant along the volume flow. The vacuum momentum constraint can also be reformulated in a similar way as a (more complicated) condition on the change of the imaginary part of the Chern-Simons functional along the flow of York's time.Comment: 15 pages, plain Te
    • 

    corecore