13,301 research outputs found

    Optical Properties of Strained Graphene

    Full text link
    The optical conductivity of graphene strained uniaxially is studied within the Kubo-Greenwood formalism. Focusing on inter-band absorption, we analyze and quantify the breakdown of universal transparency in the visible region of the spectrum, and analytically characterize the transparency as a function of strain and polarization. Measuring transmittance as a function of incident polarization directly reflects the magnitude and direction of strain. Moreover, direction-dependent selection rules permit identification of the lattice orientation by monitoring the van-Hove transitions. These photoelastic effects in graphene can be explored towards atomically thin, broadband optical elements

    A conjugate for the Bargmann representation

    Full text link
    In the Bargmann representation of quantum mechanics, physical states are mapped into entire functions of a complex variable z*, whereas the creation and annihilation operators a^\hat{a}^\dagger and a^\hat{a} play the role of multiplication and differentiation with respect to z*, respectively. In this paper we propose an alternative representation of quantum states, conjugate to the Bargmann representation, where the roles of a^\hat{a}^\dagger and a^\hat{a} are reversed, much like the roles of the position and momentum operators in their respective representations. We derive expressions for the inner product that maintain the usual notion of distance between states in the Hilbert space. Applications to simple systems and to the calculation of semiclassical propagators are presented.Comment: 15 page

    Irreversible magnetization under rotating fields and lock-in effect on ErBa_2Cu_3O_7 single crystal with columnar defects

    Get PDF
    We have measured the irreversible magnetization M_i of an ErBa_2Cu_3O_7 single crystal with columnar defects (CD), using a technique based on sample rotation under a fixed magnetic field H. This method is valid for samples whose magnetization vector remains perpendicular to the sample surface over a wide angle range - which is the case for platelets and thin films - and presents several advantages over measurements of M_L(H) loops at fixed angles. The resulting M_i(\Theta) curves for several temperatures show a peak in the CD direction at high fields. At lower fields, a very well defined plateau indicative of the vortex lock-in to the CD develops. The H dependence of the lock-in angle \phi_L follows the H^{-1} theoretical prediction, while the temperature dependence is in agreement with entropic smearing effects corresponding to short range vortex-defects interactions.Comment: 7 pages, 6 figures, to be published in Phys. Rev.

    Aharonov-Bohm signature for neutral excitons in type-II quantum dot ensembles

    Full text link
    It is commonly believed that the Aharonov-Bohm (AB) effect is a typical feature of the motion of a charged particle interacting with the electromagnetic vector potential. Here we present a magnetophotoluminescence study of type-II InP/GaAs self-assembled quantum dots, unambiguously revealing the Aharonov-Bohm-type oscillations for neutral excitons when the hole ground state changes its angular momentum from lh = 0 to lh = 1, 2, and 3. The hole ring parameters derived from a simple model are in excellent agreement with the structural parameters for this system.Comment: Revised version, 10 pages, 3 figure
    corecore