19,389 research outputs found

    Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging

    Get PDF
    Locally adaptive differential frames (gauge frames) are a well-known effective tool in image analysis, used in differential invariants and PDE-flows. However, at complex structures such as crossings or junctions, these frames are not well-defined. Therefore, we generalize the notion of gauge frames on images to gauge frames on data representations U:RdSd1RU:\mathbb{R}^{d} \rtimes S^{d-1} \to \mathbb{R} defined on the extended space of positions and orientations, which we relate to data on the roto-translation group SE(d)SE(d), d=2,3d=2,3. This allows to define multiple frames per position, one per orientation. We compute these frames via exponential curve fits in the extended data representations in SE(d)SE(d). These curve fits minimize first or second order variational problems which are solved by spectral decomposition of, respectively, a structure tensor or Hessian of data on SE(d)SE(d). We include these gauge frames in differential invariants and crossing preserving PDE-flows acting on extended data representation UU and we show their advantage compared to the standard left-invariant frame on SE(d)SE(d). Applications include crossing-preserving filtering and improved segmentations of the vascular tree in retinal images, and new 3D extensions of coherence-enhancing diffusion via invertible orientation scores

    Finite-size scaling of directed percolation above the upper critical dimension

    Full text link
    We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near the non-equilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimension, whereas it fails above. Performing a momentum analysis of associated path integrals we derive modified finite-size scaling forms of the order parameter and its higher moments. The results are confirmed by numerical simulations of corresponding high-dimensional lattice models.Comment: 4 pages, one figur

    Mean-field scaling function of the universality class of absorbing phase transitions with a conserved field

    Full text link
    We consider two mean-field like models which belong to the universality class of absorbing phase transitions with a conserved field. In both cases we derive analytically the order parameter as function of the control parameter and of an external field conjugated to the order parameter. This allows us to calculate the universal scaling function of the mean-field behavior. The obtained universal function is in perfect agreement with recently obtained numerical data of the corresponding five and six dimensional models, showing that four is the upper critical dimension of this particular universality class.Comment: 8 pages, 2 figures, accepted for publication in J. Phys.

    Renormalized field theory and particle density profile in driven diffusive systems with open boundaries

    Full text link
    We investigate the density profile in a driven diffusive system caused by a plane particle source perpendicular to the driving force. Focussing on the case of critical bulk density cˉ\bar{c} we use a field theoretic renormalization group approach to calculate the density c(z)c(z) as a function of the distance from the particle source at first order in ϵ=2d\epsilon=2-d (dd: spatial dimension). For d=1d=1 we find reasonable agreement with the exact solution recently obtained for the asymmetric exclusion model. Logarithmic corrections to the mean field profile are computed for d=2d=2 with the result c(z)cˉz1(ln(z))2/3c(z)-\bar{c} \sim z^{-1} (\ln(z))^{2/3} for zz \rightarrow \infty.Comment: 32 pages, RevTex, 4 Postscript figures, to appear in Phys. Rev.

    Force Dynamics in Weakly Vibrated Granular Packings

    Get PDF
    The oscillatory force F_b^ac on the bottom of a rigid, vertically vibrated, grain filled column, reveals rich granular dynamics, even when the peak acceleration of the vibrations is signicantly less than the gravitational acceleration at the earth's surface. For loose packings or high frequencies, F_b^ac 's dynamics are dominated by grain motion. For moderate driving conditions in more compact samples, grain motion is virtually absent, but F_b^ac nevertheless exhibits strongly nonlinear and hysteretic behavior, evidencing a granular regime dominated by nontrivial force-network dynamics.Comment: 4 pages, 5 figure

    The optimal schedule for pulsar timing array observations

    Full text link
    In order to maximize the sensitivity of pulsar timing arrays to a stochastic gravitational wave background, we present computational techniques to optimize observing schedules. The techniques are applicable to both single and multi-telescope experiments. The observing schedule is optimized for each telescope by adjusting the observing time allocated to each pulsar while keeping the total amount of observing time constant. The optimized schedule depends on the timing noise characteristics of each individual pulsar as well as the performance of instrumentation. Several examples are given to illustrate the effects of different types of noise. A method to select the most suitable pulsars to be included in a pulsar timing array project is also presented.Comment: 16 pages, 6 figures, accepted by MNRA
    corecore