810 research outputs found

    Warm gas in the rotating disk of the Red Rectangle: accurate models of molecular line emission

    Full text link
    We aim to study the excitation conditions of the molecular gas in the rotating disk of the Red Rectangle, the only post-Asymptotic-Giant-Branch object in which the existence of an equatorial rotating disk has been demonstrated. For this purpose, we developed a complex numerical code that accurately treats radiative transfer in 2-D, adapted to the study of molecular lines from rotating disks. We present far-infrared Herschel/HIFI observations of the 12CO and 13CO J=6-5, J=10-9, and J=16-15 transitions in the Red Rectangle. We also present our code in detail and discuss the accuracy of its predictions, from comparison with well-tested codes. Theoretical line profiles are compared with the empirical data to deduce the physical conditions in the disk by means of model fitting. We conclude that our code is very efficient and produces reliable results. The comparison of the theoretical predictions with our observations reveals that the temperature of the Red Rectangle disk is typically ~ 100-150 K, about twice as high as previously deduced from mm-wave observations of lower-J lines. We discuss the relevance of these new temperature estimates for understanding the thermodynamics and dynamics of this prototype object, as well as for interpreting observations of other rarely studied post-AGB disks. Despite our sophisticated treatment of the line formation, our model cannot explain the relatively strong line-wing emission for intermediate-J transitions. We argue that a model including a rotating disk only cannot reproduce these data and suggest that there is an additional extended (probably bipolar) structure expanding at about 7--15 km/s.Comment: 18 pages, 21 figure

    The molecular envelope of CRL 618: A new model based on Herschel/HIFI observations

    Full text link
    We study the physical properties and molecular excitation of the different warm gas components found in the protoplanetary nebula CRL 618. We revise our previous Herschel/HIFI observations, which consist of several 12CO and 13CO lines in the far-infrared/sub-mm band. These data have been re-analyzed in detail by improving calibration, the signal-to-noise-ratio, and baseline substraction. We identify the contributions of the different nebular components to the line profiles. We have used a spatio-kinematical model to better constrain the temperature, density, and kinematics of the molecular components probed by the improved CO observations. The 12CO and 13CO J=16-15, J=10-9, and J=6-5 transitions are detected in this source. The line profiles present a composite structure showing spectacular wings in some cases, which become dominant as the energy level increases. Our analysis of the high-energy CO emission with the already known low-energy J=2-1 and J=1-0 lines confirms that the high-velocity component, or fast bipolar outflow, is hotter than previously estimated with a typical temperature of ~300 K. This component may then be an example of a very recent acceleration of the gas by shocks that has not yet cooled down. We also find that the dense central core is characterized by a very low expansion velocity, ~5 km/s, and a strong velocity gradient. We conclude that this component is very likely to be the unaltered circumstellar layers that are lost in the last AGB phase, where the ejection velocity is particularly low. The physical properties of the other two nebular components, the diffuse halo and the double empty shell, more or less agrees with the estimations derived in previous models.Comment: Accepted for publication in Astronomy & Astrophysics. 8 pages, 3 figure

    Water vapor and silicon monoxide maser observations in the protoplanetary nebula OH 231.8+4

    Full text link
    OH 231.8+4.2 is a well studied preplanetary nebula (pPN) around a binary stellar system that shows a remarkable bipolar outflow. To study the structure and kinematics of the inner 10-80 AU nebular regions we performed high-resolution observations of the H2_2O 61,6_{1,6}--52,3_{2,3} and 28^{28}SiO vv=2, JJ=1--0 maser emissions with the Very Long Baseline Array. The absolute position of both emission distributions were recovered using the phase referencing technique, and accurately registered in HST optical images. H2_2O maser clumps are found to be distributed in two areas of 20 mas in size spatially displaced by ∼\sim60 milli-arcseconds along an axis oriented nearly north-south. SiO masers are tentatively found to be placed between the two H2_2O maser emitting regions, probably indicating the position of the Mira component of the system. The SiO maser emission traces an inner equatorial component with a diameter of 12 AU, probably a disk rotating around the M-type star. Outwards, we detect in the H2_2O data a pair of polar caps, separated by 80 AU. We believe that the inner regions of the nebula probably have been altered by the presence of the companion, leading to an equator-to-pole density contrast that may explain the lack of H2_2O masers and strong SiO maser emission in the denser, equatorial regions.Comment: 5 pages, 1 figure, A&A accepte

    Detection of Keplerian dynamics in a disk around the post-AGB star AC Her

    Full text link
    So far, only one rotating disk has been clearly identified and studied in AGB or post-AGB objects (in the Red Rectangle), by means of observations with high spectral and spatial resolution. However, disks are thought to play a key role in the late stellar evolution and are suspected to surround many evolved stars. We aim to extend our knowledge on these structures. We present interferometric observations of CO J=2-1 emission from the nebula surrounding the post-AGB star AC Her, a source belonging to a class of objects that share properties with the Red Rectangle and show hints of Keplerian disks. We clearly detect the Keplerian dynamics of a second disk orbiting an evolved star. Its main properties (size, temperature, central mass) are derived from direct interpretation of the data and model fitting. With this we confirm that there are disks orbiting the stars of this relatively wide class of post-AGB objectsComment: 4 pages, 3 figure

    Interferometric observations of SiO thermal emission in the inner wind of M-type AGB stars IK Tauri and IRC+10011

    Full text link
    Context. AGB stars go through a process of strong mass-loss that involves pulsations of the atmosphere, which extends to a region where the conditions are adequate for dust grains to form. Radiation pressure acts on these grains which, coupled to the gas, drive a massive outflow. The details of this process are not clear, including which molecules are involved in the condensation of dust grains. Aims. To study the role of the SiO molecule in the process of dust formation and mass-loss in M-type AGB stars. Methods. Using the IRAM NOEMA interferometer we observed the 28^{28}SiO and 29^{29}SiO J=3−2J=3-2, v=0v=0 emission from the inner circumstellar envelope of the evolved stars IK Tau and IRC+10011. We computed azimuthally averaged emission profiles to compare the observations to models using a molecular excitation and ray-tracing code for SiO thermal emission. Results. We observed circular symmetry in the emission distribution. We also found that the source diameter varies only marginally with radial velocity, which is not the expected behavior for envelopes expanding at an almost constant velocity. The adopted density, velocity, and abundance laws, together with the mass-loss rate, which best fit the observations, give us information on the chemical behavior of the SiO molecule and its role in the dust formation process. Conclusions. The results indicate that there is a strong coupling between the depletion of gas phase SiO and gas acceleration in the inner envelope. This could be explained by the condensation of SiO into dust grains

    FPGA accelerator for gradient boosting decision trees

    Get PDF
    A decision tree is a well-known machine learning technique. Recently their popularity has increased due to the powerful Gradient Boosting ensemble method that allows to gradually increasing accuracy at the cost of executing a large number of decision trees. In this paper we present an accelerator designed to optimize the execution of these trees while reducing the energy consumption. We have implemented it in an FPGA for embedded systems, and we have tested it with a relevant case-study: pixel classification of hyperspectral images. In our experiments with different images our accelerator can process the hyperspectral images at the same speed at which they are generated by the hyperspectral sensors. Compared to a high-performance processor running optimized software, on average our design is twice as fast and consumes 72 times less energy. Compared to an embedded processor, it is 30 times faster and consumes 23 times less energy
    • …
    corecore