989 research outputs found

    An In Vitro Comparison of the Rake Angles Between K3 and ProFile Endodontic File Systems

    Get PDF
    The purpose of this study was to compare rake angles of the ProFile and K3 file systems. Twenty-five 40/0.06 taper files were obtained for each system. Five files from the same manufacturer were placed perpendicularly into a vial of Epoxicure Resin and left to set for 24 h. The set-ups were removed from the vials and each were sectioned 5 mm from the tip of the files and polished. A photomicrograph was taken of each file with 100× magnification. Five sets of ProFile and five sets of K3 files were processed in this manner. Images were captured digitally, and rake angles of each file were measured. Multivariate ANOVA found a significant difference (p \u3c 0.001) among the three negative rake angles of the ProFile system compared with the K3 system

    Diffractive Meson Production and the Quark-Pomeron Coupling

    Get PDF
    Diffractive meson production at HERA offers interesting possibilities to investigate diffractive processes and thus to learn something about the properties of the pomeron. The most succesful phenomenological description of the pomeron so far assumes it to couple like a C=+1C = +1 isoscalar photon to single quarks. This coupling leads, however, to problems for exclusive diffractive reactions. We propose a new phenomenological pomeron vertex, which leads to very good fits to the known data, but avoids the problems of the old vertex.Comment: 20 pages, latex with uuencoded postscript, revised versio

    Dielectric resonances of ordered passive arrays

    Full text link
    The electrical and optical properties of ordered passive arrays, constituted of inductive and capacitive components, are usually deduced from Kirchhoff's rules. Under the assumption of periodic boundary conditions, comparable results may be obtained via an approach employing transfer matrices. In particular, resonances in the dielectric spectrum are demonstrated to occur if all eigenvalues of the transfer matrix of the entire array are unity. The latter condition, which is shown to be equivalent to the habitual definition of a resonance in impedance for an array between electrodes, allows for a convenient and accurate determination of the resonance frequencies, and may thus be used as a tool for the design of materials with a specific dielectric response. For the opposite case of linear arrays in a large network, where periodic boundary condition do not apply, several asymptotic properties are derived. Throughout the article, the derived analytic results are compared to numerical models, based on either Exact Numerical Renormalisation or the spectral method.Comment: 12 pages, 12 figure

    QCD sum rules with finite masses

    Full text link
    The concept of QCD sum rules is extended to bound states composed of particles with finite mass such as scalar quarks or strange quarks. It turns out that mass corrections become important in this context. The number of relevant corrections is analyzed in a systematic discussion of the IR- and UV-divergencies, leading in general to a finite number of corrections. The results are demonstrated for a system of two massless quarks and two heavy scalar quarks.Comment: 15 pages, including two pictures to be found in an extra file. Latex neads epsf.st

    Orthogonal Linear Combinations of Gaussian Type Orbitals

    Full text link
    The set of Gaussian Type Orbitals g(n1,n2,n3) of order (n+1)(n+2)/2, of common n=n1+n2+n3<=7, common center and exponential, is customized to define a set of 2n+1 linear combinations t(n,m) (-n<=m<=n) such that each t(n,m) depends on the azimuthal and polar angle of the spherical coordinate system like the real or imaginary part of the associated Spherical Harmonic. (Results cover both Hermite and Cartesian Gaussian Type Orbitals.) Overlap, kinetic energy and Coulomb energy matrix elements are presented for generalized basis functions of the type r^s*t(n,m) (s=0,2,4,...). In addition, normalization integrals int |g(n1,n2,n3)|d^3r are calculated up to n=7 and normalization integrals int |r^s*t(n,m)|d^3r up to n=5.Comment: 13 pages, no figures, REVTeX4. Corrected eqs. (23) and (C4

    COALESCING NEUTRON STARS AS GAMMA RAY BURSTERS ?

    Get PDF
    We investigate the dynamics and evolution of coalescing neutron stars. The three-dimensional Newtonian equations of hydrodynamics are integrated by the `Piecewise Parabolic Method' However, we do include the effects of the emission of gravitational waves on the hydrodynamics. The properties of neutron star matter are described by the equation of state of Lattimer & Swesty. In addition to the fundamental hydrodynamic quantities, density, momentum, and energy, we follow the time evolution of the electron density in the stellar gas. Energy losses and changes of the electron abundance due to the emission of neutrinos are taken into account by an elaborate ``neutrino leakage scheme'', which employs a careful calculation of the lepton number and energy source terms of all neutrino types. The grid is Cartesian and equidistant with a resolution of 64**3 or 128**3, which allows us to calculate the self-gravity via fast Fourier transforms.Comment: extended abstract contribution to the proceedings of the 17th Texas Symposium, 2 pages, uuencoded compressed postscript

    Correlation functions of scattering matrix elements in microwave cavities with strong absorption

    Full text link
    The scattering matrix was measured for microwave cavities with two antennas. It was analyzed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behavior can only be modeled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems

    Reciprocal regulation of PKA and rac signaling

    Get PDF
    Activated G protein-coupled receptors (GPCRs) and receptor tyrosine kinases relay extracellular signals through spatial and temporal controlled kinase and GTPase entities. These enzymes are coordinated by multifunctional scaffolding proteins for precise intracellular signal processing. The cAMP-dependent protein kinase A (PKA) is the prime example for compartmentalized signal transmission downstream of distinct GPCRs. A-kinase anchoring proteins tether PKA to specific intracellular sites to ensure precision and directionality of PKA phosphorylation events. Here, we show that the Rho-GTPase Rac contains A-kinase anchoring protein properties and forms a dynamic cellular protein complex with PKA. The formation of this transient core complex depends on binary interactions with PKA subunits, cAMP levels and cellular GTP-loading accounting for bidirectional consequences on PKA and Rac downstream signaling. We show that GTP-Rac stabilizes the inactive PKA holoenzyme. However, β-adrenergic receptor-mediated activation of GTP-Rac–bound PKA routes signals to the Raf-Mek-Erk cascade, which is critically implicated in cell proliferation. We describe a further mechanism of how cAMP enhances nuclear Erk1/2 signaling: It emanates from transphosphorylation of p21-activated kinases in their evolutionary conserved kinase-activation loop through GTP-Rac compartmentalized PKA activities. Sole transphosphorylation of p21-activated kinases is not sufficient to activate Erk1/2. It requires complex formation of both kinases with GTP-Rac1 to unleash cAMP-PKA–boosted activation of Raf-Mek-Erk. Consequently GTP-Rac functions as a dual kinase-tuning scaffold that favors the PKA holoenzyme and contributes to potentiate Erk1/2 signaling. Our findings offer additional mechanistic insights how β-adrenergic receptor-controlled PKA activities enhance GTP-Rac–mediated activation of nuclear Erk1/2 signaling
    corecore