27,435 research outputs found

    Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania.

    Get PDF
    A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats

    Sustainable control of Anopheles mosquito population

    Get PDF
    Despite the widespread use of insecticides, community engagement programmes and preventive measures mosquito borne diseases are growing and new tools to prevent the spread of disease are urgently needed. An alternative control measure for the eradication of Anopheles mosquitoes is suggested by the use of a Sustainable Control Model, which demonstrates the capability of Odonata, a natural beneficial predator, to exercise control over Anopheles mosquitoes in less than 140 days

    The phylogeny of Anophelinae revisited: inferences about the origin and classification of Anopheles (Diptera: Culicidae)

    Get PDF
    © 2015 Royal Swedish Academy of Sciences. "This is the pre-peer reviewed version of the following article: Harbach, R. E. and I. J. Kitching (2016). "The phylogeny of Anophelinae revisited: inferences about the origin and classification of Anopheles (Diptera: Culicidae)." Zoologica Scripta 45(1): 34-47, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/zsc.12137/full. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

    Characterisation of species and diversity of Anopheles gambiae Keele Colony

    Get PDF
    Anopheles gambiae sensu stricto was recently reclassified as two species, An. coluzzii and An. gambiae s.s., in wild-caught mosquitoes, on the basis of the molecular form, denoted M or S, of a marker on the X chromosome. The An. gambiae Keele line is an outbred laboratory colony strain that was developed around 12 years ago by crosses between mosquitoes from 4 existing An. gambiae colonies. Laboratory colonies of mosquitoes often have limited genetic diversity because of small starting populations (founder effect) and subsequent fluctuations in colony size. Here we describe the characterisation of the chromosomal form(s) present in the Keele line, and investigate the diversity present in the colony using microsatellite markers on chromosome 3. We also characterise the large 2La inversion on chromosome 2. The results indicate that only the M-form of the chromosome X marker is present in the Keele colony, which was unexpected given that 3 of the 4 parent colonies were probably S-form. Levels of diversity were relatively high, as indicated by a mean number of microsatellite alleles of 6.25 across 4 microsatellites, in at least 25 mosquitoes. Both karyotypes of the inversion on chromosome 2 (2La/2L+a) were found to be present at approximately equal proportions. The Keele colony has a mixed M- and S-form origin, and in common with the PEST strain, we propose continuing to denote it as an An. gambiae s.s. line

    A significant increase in kdr in Anopheles gambiae is associated with an intensive vector control intervention in Burundi highlands.

    Get PDF
    OBJECTIVES AND METHODS: In Burundi, the occurrence of the knock down resistance (kdr) mutation in Anopheles gambiae sensu lato (s.l.) was determined for six consecutive years within the framework of a vector control programme. Findings were also linked with the insecticide resistance status observed with bioassay in An. gambiae s.l. and An. funestus. RESULTS: The proportion of An. gambiae s.l. carrying the East Leu-Ser kdr mutation was 1% before the spraying intervention in 2002; by 2007 it was 86% in sprayed valleys and 67% in untreated valleys. Multivariate analysis showed that increased risk of carrying the kdr mutation is associated with spraying interventions, location and time. In bioassays conducted between 2005 and 2007 at five sites, An. funestus was susceptible to permethrin, deltamethrin and DDT. Anopheles gambiae s.l. remained susceptible or tolerant to deltamethrin and resistant to DDT and permethrin, but only when kdr allele carriers reached 90% of the population. CONCLUSIONS: The cross-resistance against DDT and permethrin in Karuzi suggests a possible kdr resistance mechanism. Nevertheless, the homozygous resistant genotype alone does not entirely explain the bioassay results, and other mechanisms conferring resistance cannot be ruled out. After exposure to all three insecticides, homozygote individuals for the kdr allele dominate among the surviving An. gambiae s.l. This confirms the potential selection pressure of pyrethroids on kdr mutation. However, the high occurrence of the kdr mutation, even at sites far from the sprayed areas, suggests a selection pressure other than that exerted by the vector control programme

    Insecticide treated bednets: A review

    Get PDF
    The functioning and efficacy of Insecticide Treated Nets (ITNs) in controlling malaria are discussed in the present review. ITNs Insecticide Treated Nets (ITNs) have been shown to have a beneficial impact in reducing malaria mortality and morbidity in children. However, a few issues are still unresolved: for instance the short and long term effects of an artificially induced reduction in the intensity of malaria transmission on the immune system and the mortality of children is not entirely understood; further studies are needed on whether the spread of resistance to pyrethroids, which is the only class of insecticide currently recommended on nets, affects the effectiveness of ITNs so that resistance to these insecticides would constitutes a serious threat for the success of the malaria vector control programs. Lastly, the economic aspects are presented. The main problem is to find a way for a sustainable implementation of this methodology, that includes purchasing new bednets, delivery and the regular re-impregnation of the existing nets. Free delivery and retreatment in poor countries is not only more equitable but also more efficient than marketing methods
    corecore