7,484 research outputs found

    MGSim - Simulation tools for multi-core processor architectures

    Get PDF
    MGSim is an open source discrete event simulator for on-chip hardware components, developed at the University of Amsterdam. It is intended to be a research and teaching vehicle to study the fine-grained hardware/software interactions on many-core and hardware multithreaded processors. It includes support for core models with different instruction sets, a configurable multi-core interconnect, multiple configurable cache and memory models, a dedicated I/O subsystem, and comprehensive monitoring and interaction facilities. The default model configuration shipped with MGSim implements Microgrids, a many-core architecture with hardware concurrency management. MGSim is furthermore written mostly in C++ and uses object classes to represent chip components. It is optimized for architecture models that can be described as process networks.Comment: 33 pages, 22 figures, 4 listings, 2 table

    A distributed object-oriented graphical programming system

    Get PDF
    technical reportThis report presents the design of a distributed parallel object system (DPOS) and its implementation using a graphical editing interface. DPOS brings together concepts of object-oriented programming and graphical programming with aspects of modern functional languages. Programs are defined as networks of active processes called "Process Objects" and interconnecting communications lines. These active objects are independent single threaded programs that employ much of the modularity, encapsulation of function, and encapsulation of data found in sequential object-oriented programming. The system defines a clear and simple approach to generating and managing parallelism and interprocess communication in a distributed parallel environment. DPOS contributes several new solutions to the problems of distributed parallel programming that are improvements over existing systems. The key improvements of this system include: a more complete and versatile means of dynamic process creation; the specification of complex network topologies in an intuitively clear and understandable way; seperation of the management of parallelism from the definition of computation; automatic resolution of low level critical section issues; the ability to design and develop separate processes as traditional single threaded programs; the encapsulation and incremental development of programs subnetworks; application of graphical programming concepts to high level programming

    Operating-system support for distributed multimedia

    Get PDF
    Multimedia applications place new demands upon processors, networks and operating systems. While some network designers, through ATM for example, have considered revolutionary approaches to supporting multimedia, the same cannot be said for operating systems designers. Most work is evolutionary in nature, attempting to identify additional features that can be added to existing systems to support multimedia. Here we describe the Pegasus project's attempt to build an integrated hardware and operating system environment from\ud the ground up specifically targeted towards multimedia
    • ā€¦
    corecore