5,213 research outputs found

    Analysis of Affinely Equivalent Boolean Functions

    Get PDF
    By walsh transform, autocorrelation function, decomposition, derivation and modification of truth table, some new invariants are obtained. Based on invariant theory, we get two results: first a general algorithm which can be used to judge if two boolean functions are affinely equivalent and to obtain the affine equivalence relationship if they are equivalent. For example, all 8-variable homogenous bent functions of degree 3 are classified into 2 classes; second, the classification of the Reed-Muller code R(4,6)/R(1,6),R(3,7)/R(1,7),R(4,6)/R(1,6),R(3,7)/R(1,7), which can be used to almost enumeration of 8-variable bent functions

    A STUDY OF BINARY DECISION DIAGRAM CHARACTERISTICS OF BENT BOOLEAN FUNCTIONS

    Get PDF
    Bent Boolean functions exist only for an even number of variables, moreover, they are unbalanced. Therefore, they are used in coding theory and in many areas of computer science. General form of bent functions is still unknown. One way of representing Boolean functions is with a reduced ordered binary decision diagram (ROBDD). The strength of ROBDDs is that they can represent Boolean functions data with a high level of redundancy in a compact form, as long as the data is encoded in such a way that the redundancy is exposed. This paper investigates characteristics of bent functions with focus on their ROBDD parameters. Decision diagram experimental framework has been used for implementation of a program for calculation of the ROBDD parameters. The results presented in this paper are intended to be used to create methods for the construction of bent functions using a ROBDD as a data structure from which the bent functions can be discovered

    Boolean Functions and Permanents of Sylvester Hadamard Matrices

    Get PDF
    One of the fastest known general techniques for computing permanents is Ryser’s formula. On this note, we show that this formula over Sylvester Hadamard matrices of order 2m, Hm, can be carried out by enumerating m-variable Boolean functions with an arbitrary Walsh spectrum. As a consequence, the quotient per(Hm)/22m might be a measure of the “density” of m-variable Boolean functions with high nonlinearity

    A Construction of Bent Functions of n + 2 Variables from a Bent Function of n Variables and Its Cyclic Shifts

    Get PDF
    We present a method to iteratively construct new bent functions of n + 2 variables from a bent function of n variables and its cyclic shift permutations using minterms of n variables and minterms of 2 variables. In addition, we provide the number of bent functions of n + 2 variables that we can obtain by applying the method here presented, and finally we compare this method with a previous one introduced by us in 2008 and with the Rothaus and Maiorana-McFarland constructions.The work of the first author was partially supported by Spanish Grant MTM2011-24858 of the Ministerio de Economía y Competitividad of the Gobierno de España

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    A generalized theory of semiflexible polymers

    Get PDF
    DNA bending on length scales shorter than a persistence length plays an integral role in the translation of genetic information from DNA to cellular function. Quantitative experimental studies of these biological systems have led to a renewed interest in the polymer mechanics relevant for describing the conformational free energy of DNA bending induced by protein-DNA complexes. Recent experimental results from DNA cyclization studies have cast doubt on the applicability of the canonical semiflexible polymer theory, the wormlike chain (WLC) model, to DNA bending on biological length scales. This paper develops a theory of the chain statistics of a class of generalized semiflexible polymer models. Our focus is on the theoretical development of these models and the calculation of experimental observables. To illustrate our methods, we focus on a specific toy model of DNA bending. We show that the WLC model generically describes the long-length-scale chain statistics of semiflexible polymers, as predicted by the Renormalization Group. In particular, we show that either the WLC or our new model adequate describes force-extension, solution scattering, and long-contour-length cyclization experiments, regardless of the details of DNA bend elasticity. In contrast, experiments sensitive to short-length-scale chain behavior can in principle reveal dramatic departures from the linear elastic behavior assumed in the WLC model. We demonstrate this explicitly by showing that our toy model can reproduce the anomalously large short-contour-length cyclization J factors observed by Cloutier and Widom. Finally, we discuss the applicability of these models to DNA chain statistics in the context of future experiments
    corecore