28,907 research outputs found

    EÂłDOAS: balancing QoE and energy-saving for multi-device adaptation in future mobile wireless video delivery

    Get PDF
    Smart devices (e.g. smartphones, tablets, smart-home devices, etc.) have become important companions to most people in their daily activities, and are very much used for multimedia content exchange (i.e. video sharing, real-time/non-real-time multimedia streaming), contributing to the exponential increase in mobile traffic over the current wireless networks. While the next generation mobile networks will provide higher capacity than the current 4G systems, the network operators will face important challenges associated with the outstanding increase of both video traffic and user expectations in terms of their levels of perceived quality or Quality of Experience (QoE). Furthermore, the heterogeneity of mobile devices (e.g. screen resolution, battery life, hardware performance) also impacts severely the end-user QoE. In this context, this paper proposes an Evolved QoE-aware Energy-saving Device-Oriented Adaptive Scheme (E3DOAS ) for mobile multimedia delivery over future wireless networks. E3DOAS makes use of a coalition game-based rate allocation strategy within the multi-device heterogeneous environment, and optimizes the trade-off between the end-user perceived quality of the multimedia delivery and the mobile device energy-saving. Testing has involved a prototype of E3DOAS, a crowd-sourcing-based QoE assessment method to model non-reference perceptual video quality, and an energy measurement testbed introduced to collect power consumption parameters of the mobile devices. Simulation-based performance evaluation showed how E3DOAS outperformed other state of the art multimedia adaptive solutions in terms of energy saving, end-to-end Quality of Service (QoS) metrics and end-user perceived quality

    UEFA-M: Utility-based energy efficient adaptive multimedia mechanism over LTE HetNet small cells

    Get PDF
    The emerging advances in mobile computing devices enable the adoption of new services like video over LTE (ViLTE), augmented and virtual reality, omnidirectional video, etc. However, these new services cannot be technologically achievable within the current networks without a rethink in the network architecture. A simple increase in system capacity will not be enough without considering the provisioning of Quality of Experience (QoE) as the basis for network control, customer loyalty and retention rate and thus increase in network operators’ revenue. This paper proposes an Utility-based Energy eFficient Adaptive Multimedia Mechanism (UEFA-M) over the LTE HetNet Small Cells environment that combines the use of utility theory and the concept of proactive handover to enable the adaptation of the multimedia stream ahead of the handover process in order to provide a seamless QoE to the mobile user and energy savings for their mobile device. Mathematical models for energy and quality are derived from previous real experimental data and integrated in the adaptation mechanism using the utility theory. The performance of the proposed adaptive multimedia scheme is analyzed and compared against a non-adaptive solution in terms of energy efficiency and Mean Opinion Score (MOS

    Developing Adaptive and Personalized Mobile Applications: A Framework and Design Issues

    Get PDF
    The rapid growth of mobile technology has expedited ubiquitous information access via handheld devices. However, the fundamental natures of mobile information systems are different from those of desktop applications in terms of purpose of use, device features, communication networks, and working environments. This poses various challenges to mobile information systems on how to deliver and present multimedia content in an effective and adaptive manner. One of the major challenges is to deliver personalized information to the right person in a preferred format based on the changing environment. This paper proposes an innovative framework for developing mobile applications that deliver personalized, context-aware, and adaptive content to mobile users. The framework consists of four major components: information selection, content analysis, media transcoding, and customized presentation. It can be applied to a variety of mobile applications such as mobile web, news alert services, and mobile commerce

    Saving Energy in Mobile Devices for On-Demand Multimedia Streaming -- A Cross-Layer Approach

    Full text link
    This paper proposes a novel energy-efficient multimedia delivery system called EStreamer. First, we study the relationship between buffer size at the client, burst-shaped TCP-based multimedia traffic, and energy consumption of wireless network interfaces in smartphones. Based on the study, we design and implement EStreamer for constant bit rate and rate-adaptive streaming. EStreamer can improve battery lifetime by 3x, 1.5x and 2x while streaming over Wi-Fi, 3G and 4G respectively.Comment: Accepted in ACM Transactions on Multimedia Computing, Communications and Applications (ACM TOMCCAP), November 201

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    • …
    corecore