16 research outputs found

    Exploiting Bounds Optimization for the Semi-formal Verification of Analog Circuits

    Get PDF
    This paper proposes a semi-formal methodology for modeling and verification of analog circuits behavioral properties using multivariate optimization techniques. Analog circuit differential models are automatically extracted and their qualitative behavior is computed for interval-valued parameters, inputs and initial conditions. The method has the advantage of guaranteeing the rough enclosure of any possible dynamical behavior of analog circuits. The circuit behavioral properties are then verified on the generated transient response bounds. Experimental results show that the resulting state variable envelopes can be effectively employed for a sound verification of analog circuit properties, in an acceptable run-time

    Algorithms for Verification of Analog and Mixed-Signal Integrated Circuits

    Get PDF
    Over the past few decades, the tremendous growth in the complexity of analog and mixed-signal (AMS) systems has posed great challenges to AMS verification, resulting in a rapidly growing verification gap. Existing formal methods provide appealing completeness and reliability, yet they suffer from their limited efficiency and scalability. Data oriented machine learning based methods offer efficient and scalable solutions but do not guarantee completeness or full coverage. Additionally, the trend towards shorter time to market for AMS chips urges the development of efficient verification algorithms to accelerate with the joint design and testing phases. This dissertation envisions a hierarchical and hybrid AMS verification framework by consolidating assorted algorithms to embrace efficiency, scalability and completeness in a statistical sense. Leveraging diverse advantages from various verification techniques, this dissertation develops algorithms in different categories. In the context of formal methods, this dissertation proposes a generic and comprehensive model abstraction paradigm to model AMS content with a unifying analog representation. Moreover, an algorithm is proposed to parallelize reachability analysis by decomposing AMS systems into subsystems with lower complexity, and dividing the circuit's reachable state space exploration, which is formulated as a satisfiability problem, into subproblems with a reduced number of constraints. The proposed modeling method and the hierarchical parallelization enhance the efficiency and scalability of reachability analysis for AMS verification. On the subject of learning based method, the dissertation proposes to convert the verification problem into a binary classification problem solved using support vector machine (SVM) based learning algorithms. To reduce the need of simulations for training sample collection, an active learning strategy based on probabilistic version space reduction is proposed to perform adaptive sampling. An expansion of the active learning strategy for the purpose of conservative prediction is leveraged to minimize the occurrence of false negatives. Moreover, another learning based method is proposed to characterize AMS systems with a sparse Bayesian learning regression model. An implicit feature weighting mechanism based on the kernel method is embedded in the Bayesian learning model for concurrent quantification of influence of circuit parameters on the targeted specification, which can be efficiently solved in an iterative method similar to the expectation maximization (EM) algorithm. Besides, the achieved sparse parameter weighting offers favorable assistance to design analysis and test optimization

    A Study Of The Mathematics Of Deep Learning

    Get PDF
    "Deep Learning"/"Deep Neural Nets" is a technological marvel that is now increasingly deployed at the cutting-edge of artificial intelligence tasks. This ongoing revolution can be said to have been ignited by the iconic 2012 paper from the University of Toronto titled ``ImageNet Classification with Deep Convolutional Neural Networks'' by Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. This paper showed that deep nets can be used to classify images into meaningful categories with almost human-like accuracies! As of 2020 this approach continues to produce unprecedented performance for an ever widening variety of novel purposes ranging from playing chess to self-driving cars to experimental astrophysics and high-energy physics. But this new found astonishing success of deep neural nets in the last few years has been hinged on an enormous amount of heuristics and it has turned out to be extremely challenging to be mathematically rigorously explainable. In this thesis we take several steps towards building strong theoretical foundations for these new paradigms of deep-learning. Our proofs here can be broadly grouped into three categories, 1. Understanding Neural Function Spaces We show new circuit complexity theorems for deep neural functions over real and Boolean inputs and prove classification theorems about these function spaces which in turn lead to exact algorithms for empirical risk minimization for depth 2 ReLU nets. We also motivate a measure of complexity of neural functions and leverage techniques from polytope geometry to constructively establish the existence of high-complexity neural functions. 2. Understanding Deep Learning Algorithms We give fast iterative stochastic algorithms which can learn near optimal approximations of the true parameters of a \relu gate in the realizable setting. (There are improved versions of this result available in our papers https://arxiv.org/abs/2005.01699 and https://arxiv.org/abs/2005.04211 which are not included in the thesis.) We also establish the first ever (a) mathematical control on the behaviour of noisy gradient descent on a ReLU gate and (b) proofs of convergence of stochastic and deterministic versions of the widely used adaptive gradient deep-learning algorithms, RMSProp and ADAM. This study also includes a first-of-its-kind detailed empirical study of the hyper-parameter values and neural net architectures when these modern algorithms have a significant advantage over classical acceleration based methods. 3. Understanding The Risk Of (Stochastic) Neural Nets We push forward the emergent technology of PAC-Bayesian bounds for the risk of stochastic neural nets to get bounds which are not only empirically smaller than contemporary theories but also demonstrate smaller rates of growth w.r.t increase in width and depth of the net in experimental tests. These critically depend on our novel theorems proving noise resilience of nets. This work also includes an experimental investigation of the geometric properties of the path in weight space that is traced out by the net during the training. This leads us to uncover certain seemingly uniform and surprising geometric properties of this process which can potentially be leveraged into better bounds in future

    Robust Model Predictive Control for Linear Parameter Varying Systems along with Exploration of its Application in Medical Mobile Robots

    Get PDF
    This thesis seeks to develop a robust model predictive controller (MPC) for Linear Parameter Varying (LPV) systems. LPV models based on input-output display are employed. We aim to improve robust MPC methods for LPV systems with an input-output display. This improvement will be examined from two perspectives. First, the system must be stable in conditions of uncertainty (in signal scheduling or due to disturbance) and perform well in both tracking and regulation problems. Secondly, the proposed method should be practical, i.e., it should have a reasonable computational load and not be conservative. Firstly, an interpolation approach is utilized to minimize the conservativeness of the MPC. The controller is calculated as a linear combination of a set of offline predefined control laws. The coefficients of these offline controllers are derived from a real-time optimization problem. The control gains are determined to ensure stability and increase the terminal set. Secondly, in order to test the system's robustness to external disturbances, a free control move was added to the control law. Also, a Recurrent Neural Network (RNN) algorithm is applied for online optimization, showing that this optimization method has better speed and accuracy than traditional algorithms. The proposed controller was compared with two methods (robust MPC and MPC with LPV model based on input-output) in reference tracking and disturbance rejection scenarios. It was shown that the proposed method works well in both parts. However, two other methods could not deal with the disturbance. Thirdly, a support vector machine was introduced to identify the input-output LPV model to estimate the output. The estimated model was compared with the actual nonlinear system outputs, and the identification was shown to be effective. As a consequence, the controller can accurately follow the reference. Finally, an interpolation-based MPC with free control moves is implemented for a wheeled mobile robot in a hospital setting, where an RNN solves the online optimization problem. The controller was compared with a robust MPC and MPC-LPV in reference tracking, disturbance rejection, online computational load, and region of attraction. The results indicate that our proposed method surpasses and can navigate quickly and reliably while avoiding obstacles

    Behavioral validation in Cyber-physical systems: Safety violations and beyond

    Get PDF
    The advances in software and hardware technologies in the last two decades have paved the way for the development of complex systems we observe around us. Avionics, automotive, power grid, medical devices, and robotics are a few examples of such systems which are usually termed as Cyber-physical systems (CPS) as they often involve both physical and software components. Deployment of a CPS in a safety critical application mandates that the system operates reliably even in adverse scenarios. While effective in improving confidence in system functionality, testing can not ascertain the absence of failures; whereas, formal verification can be exhaustive but it may not scale well as the system complexity grows. Simulation driven analysis tends to bridge this gap by tapping key system properties from the simulations. Despite their differences, all these analyses can be pivotal in providing system behaviors as the evidence to the satisfaction or violation of a given performance specification. However, less attention has been paid to algorithmically validating and characterizing different behaviors of a CPS. The focus of this thesis is on behavioral validation of Cyber-physical systems, which can supplement an existing CPS analysis framework. This thesis develops algorithmic tools for validating verification artifacts by generating a variety of counterexamples for a safety violation in a linear hybrid system. These counterexamples can serve as performance metrics to evaluate different controllers during design and testing phases. This thesis introduces the notion of complete characterization of a safety violation in a linear system with bounded inputs, and it proposes a sound technique to compute and efficiently represent these characterizations. This thesis further presents neural network based frameworks to perform systematic state space exploration guided by sensitivity or its gradient approximation in learning-enabled control (LEC) systems. The presented technique is accompanied with convergence guarantees and yields considerable performance gain over a widely used falsification platform for a class of signal temporal logic (STL) specifications.Doctor of Philosoph

    Advancements in Adversarially-Resilient Consensus and Safety-Critical Control for Multi-Agent Networks

    Full text link
    The capabilities of and demand for complex autonomous multi-agent systems, including networks of unmanned aerial vehicles and mobile robots, are rapidly increasing in both research and industry settings. As the size and complexity of these systems increase, dealing with faults and failures becomes a crucial element that must be accounted for when performing control design. In addition, the last decade has witnessed an ever-accelerating proliferation of adversarial attacks on cyber-physical systems across the globe. In response to these challenges, recent years have seen an increased focus on resilience of multi-agent systems to faults and adversarial attacks. Broadly speaking, resilience refers to the ability of a system to accomplish control or performance objectives despite the presence of faults or attacks. Ensuring the resilience of cyber-physical systems is an interdisciplinary endeavor that can be tackled using a variety of methodologies. This dissertation approaches the resilience of such systems from a control-theoretic viewpoint and presents several novel advancements in resilient control methodologies. First, advancements in resilient consensus techniques are presented that allow normally-behaving agents to achieve state agreement in the presence of adversarial misinformation. Second, graph theoretic tools for constructing and analyzing the resilience of multi-agent networks are derived. Third, a method for resilient broadcasting vector-valued information from a set of leaders to a set of followers in the presence of adversarial misinformation is presented, and these results are applied to the problem of propagating entire knowledge of time-varying Bezier-curve-based trajectories from leaders to followers. Finally, novel results are presented for guaranteeing safety preservation of heterogeneous control-affine multi-agent systems with sampled-data dynamics in the presence of adversarial agents.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168102/1/usevitch_1.pd

    Putting reaction-diffusion systems into port-Hamiltonian framework

    Get PDF
    Reaction-diffusion systems model the evolution of the constituents distributed in space under the influence of chemical reactions and diffusion [6], [10]. These systems arise naturally in chemistry [5], but can also be used to model dynamical processes beyond the realm of chemistry such as biology, ecology, geology, and physics. In this paper, by adopting the viewpoint of port-controlled Hamiltonian systems [7] we cast reaction-diffusion systems into the portHamiltonian framework. Aside from offering conceptually a clear geometric interpretation formalized by a Stokes-Dirac structure [8], a port-Hamiltonian perspective allows to treat these dissipative systems as interconnected and thus makes their analysis, both quantitative and qualitative, more accessible from a modern dynamical systems and control theory point of view. This modeling approach permits us to draw immediately some conclusions regarding passivity and stability of reaction-diffusion systems. It is well-known that adding diffusion to the reaction system can generate behaviors absent in the ode case. This primarily pertains to the problem of diffusion-driven instability which constitutes the basis of Turing’s mechanism for pattern formation [11], [5]. Here the treatment of reaction-diffusion systems as dissipative distributed portHamiltonian systems could prove to be instrumental in supply of the results on absorbing sets, the existence of the maximal attractor and stability analysis. Furthermore, by adopting a discrete differential geometrybased approach [9] and discretizing the reaction-diffusion system in port-Hamiltonian form, apart from preserving a geometric structure, a compartmental model analogous to the standard one [1], [2] is obtaine
    corecore