2,216 research outputs found

    AMISEC: Leveraging Redundancy and Adaptability to Secure AmI Applications

    Get PDF
    Security in Ambient Intelligence (AmI) poses too many challenges due to the inherently insecure nature of wireless sensor nodes. However, there are two characteristics of these environments that can be used effectively to prevent, detect, and confine attacks: redundancy and continuous adaptation. In this article we propose a global strategy and a system architecture to cope with security issues in AmI applications at different levels. Unlike in previous approaches, we assume an individual wireless node is vulnerable. We present an agent-based architecture with supporting services that is proven to be adequate to detect and confine common attacks. Decisions at different levels are supported by a trust-based framework with good and bad reputation feedback while maintaining resistance to bad-mouthing attacks. We also propose a set of services that can be used to handle identification, authentication, and authorization in intelligent ambients. The resulting approach takes into account practical issues, such as resource limitation, bandwidth optimization, and scalability

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    A hierarchical detection method in external communication for self-driving vehicles based on TDMA

    Get PDF
    Security is considered a major challenge for self-driving and semi self-driving vehicles. These vehicles depend heavily on communications to predict and sense their external environment used in their motion. They use a type of ad hoc network termed Vehicular ad hoc networks (VANETs). Unfortunately, VANETs are potentially exposed to many attacks on network and application level. This paper, proposes a new intrusion detection system to protect the communication system of self-driving cars; utilising a combination of hierarchical models based on clusters and log parameters. This security system is designed to detect Sybil and Wormhole attacks in highway usage scenarios. It is based on clusters, utilising Time Division Multiple Access (TDMA) to overcome some of the obstacles of VANETs such as high density, high mobility and bandwidth limitations in exchanging messages. This makes the security system more efficient, accurate and capable of real time detection and quick in identification of malicious behaviour in VANETs. In this scheme, each vehicle log calculates and stores different parameter values after receiving the cooperative awareness messages from nearby vehicles. The vehicles exchange their log data and determine the difference between the parameters, which is utilised to detect Sybil attacks and Wormhole attacks. In order to realize efficient and effective intrusion detection system, we use the well-known network simulator (ns-2) to verify the performance of the security system. Simulation results indicate that the security system can achieve high detection rates and effectively detect anomalies with low rate of false alarms

    Intrusion Detection System (IDS) Techniques and Responses for Mobile Wireless Networks

    Get PDF
    In recent years, the rapidly expanding area of mobile and wireless computing applications was definitely redefined the concept of network security. Even though that wireless had opened a new and exiting world with its advancing technology it is no doubt that it is popularity is on the rise. However, the biggest concern with either wireless or mobile computing applications in security. It can no longer be effective in the traditional way of securing networks with the use of firewalls and even with the use of stronger encryption algorithm keys. The need to develop and research for new structures and methods to protect and define the wireless networks and the mobile computing applications is becoming more and more evident. In this report, we will conduct an in-depth analysis of the weaknesses of the wireless networks and hence proved why the use of an intrusion detection system is of great importance in securing the backbone of mobile computing field. This would also involve detecting anomalies in the mobile ad-hoc network including inconsistencies in the routing tables and activities on other layers

    Intrusion-aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Get PDF
    Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.Comment: 19 pages, 7 figure

    A mechanism design-based secure architecture for mobile ad hoc networks

    Get PDF
    International audienceTo avoid the single point of failure for the certificate authority (CA) in MANET, a decentralized solution is proposed where nodes are grouped into different clusters. Each cluster should contain at least two confident nodes. One is known as CA and the another as register authority RA. The Dynamic Demilitarized Zone (DDMZ) is proposed as a solution for protecting the CA node against potential attacks. It is formed from one or more RA node. The problems of such a model are: (1) Clusters with one confident node, CA, cannot be created and thus clusters' sizes are increased which negatively affect clusters' services and stability. (2) Clusters with high density of RA can cause channel collision at the CA. (3) Clusters' lifetime are reduced since RA monitors are always launched (i.e., resource consumption). In this paper, we propose a model based on mechanism design that will allow clusters with single trusted node (CA) to be created. Our mechanism will motivate nodes that does not belong to the confident community to participate by giving them incentives in the form of trust, which can be used for cluster's services. To achieve this goal, a RA selection algorithm is proposed that selects nodes based on a predefined selection criteria function. Finally, empirical results are provided to support our solutions

    A secure mechanism design-based and game theoretical model for MANETs

    Get PDF
    International audienceTo avoid the single point of failure for the certificate authority (CA) in MANET, a decentralized solution is proposed where nodes are grouped into different clusters. Each cluster should contain at least two confident nodes. One is known as CA and the another as register authority RA. The Dynamic Demilitarized Zone (DDMZ) is proposed as a solution for protecting the CA node against potential attacks. It is formed from one or more RA node. The problems of such a model are: (1) Clusters with one confident node, CA, cannot be created and thus clusters' sizes are increased which negatively affect clusters' services and stability. (2) Clusters with high density of RA can cause channel collision at the CA. (3) Clusters' lifetime are reduced since RA monitors are always launched (i.e., resource consumption). In this paper, we propose a model based on mechanism design that will allow clusters with single trusted node (CA) to be created. Our mechanism will motivate nodes that do not belong to the confident community to participate by giving them incentives in the form of trust, which can be used for cluster's services. To achieve this goal, a RA selection algorithm is proposed that selects nodes based on a predefined selection criteria function and location (i.e., using directional antenna). Such a model is known as moderate. Based on the security risk, more RA nodes must be added to formalize a robust DDMZ. Here, we consider the tradeoff between security and resource consumption by formulating the problem as a nonzero-sum noncooperative game between the CA and attacker. Finally, empirical results are provided to support our solutions
    corecore