3,010 research outputs found

    The Boltzmann factor, DNA melting, and Brownian ratchets: Topics in an introductory physics sequence for biology and premedical students

    Full text link
    Three, interrelated biologically-relevant examples of biased random walks are presented: (1) A model for DNA melting, modelled as DNA unzipping, which provides a way to illustrate the role of the Boltzmann factor in a venue well-known to biology and pre-medical students; (2) the activity of helicase motor proteins in unzipping double-stranded DNA, for example, at the replication fork, which is an example of a Brownian ratchet; (3) force generation by actin polymerization, which is another Brownian ratchet, and for which the force and actin-concentration dependence of the velocity of actin polymerization is determined

    Blinking statistics of a molecular beacon triggered by end-denaturation of DNA

    Full text link
    We use a master equation approach based on the Poland-Scheraga free energy for DNA denaturation to investigate the (un)zipping dynamics of a denaturation wedge in a stretch of DNA, that is clamped at one end. In particular, we quantify the blinking dynamics of a fluorophore-quencher pair mounted within the denaturation wedge. We also study the behavioural changes in the presence of proteins, that selectively bind to single-stranded DNA. We show that such a setup could be well-suited as an easy-to-implement nanodevice for sensing environmental conditions in small volumes.Comment: 14 pages, 5 figures, LaTeX, IOP style. Accepted to J Phys Cond Mat special issue on diffusio

    Breathing dynamics in heteropolymer DNA

    Get PDF
    While the statistical mechanical description of DNA has a long tradition, renewed interest in DNA melting from a physics perspective is nourished by measurements of the fluctuation dynamics of local denaturation bubbles by single molecule spectroscopy. The dynamical opening of DNA bubbles (DNA breathing) is supposedly crucial for biological functioning during, for instance, transcription initiation and DNA's interaction with selectively single-stranded DNA binding proteins. Motivated by this, we consider the bubble breathing dynamics in a heteropolymer DNA based on a (2+1)-variable master equation and complementary stochastic Gillespie simulations, providing the bubble size and the position of the bubble along the sequence as a function of time. We utilize new experimental data that independently obtain stacking and hydrogen bonding contributions to DNA stability. We calculate the spectrum of relaxation times and the experimentally measurable autocorrelation function of a fluorophore-quencher tagged base-pair, and demonstrate good agreement with fluorescence correlation experiments. A significant dependence of opening probability and waiting time between bubble events on the local DNA sequence is revealed and quantified for a promoter sequence of the T7 phage. The strong dependence on sequence, temperature and salt concentration for the breathing dynamics of DNA found here points at a good potential for nanosensing applications by utilizing short fluorophore-quencher dressed DNA constructs.Comment: 11 pages, 8 figure

    Master equation approach to DNA-breathing in heteropolymer DNA

    Full text link
    After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies between less than one to a few kT. This causes the opening of intermittent single-stranded bubbles. Their unzipping and zipping dynamics can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA-breathing in a heteropolymer DNA in terms of a master equation that governs the time evolution of the joint probability distribution for the bubble size and position along the sequence. The transfer coefficients are based on the Poland-Scheraga free energy model. We derive the autocorrelation function for the bubble dynamics and the associated relaxation time spectrum. In particular, we show how one can obtain the probability densities of individual bubble lifetimes and of the waiting times between successive bubble events from the master equation. A comparison to results of a stochastic Gillespie simulation shows excellent agreement.Comment: 12 pages, 8 figure

    Artificial Sequences and Complexity Measures

    Get PDF
    In this paper we exploit concepts of information theory to address the fundamental problem of identifying and defining the most suitable tools to extract, in a automatic and agnostic way, information from a generic string of characters. We introduce in particular a class of methods which use in a crucial way data compression techniques in order to define a measure of remoteness and distance between pairs of sequences of characters (e.g. texts) based on their relative information content. We also discuss in detail how specific features of data compression techniques could be used to introduce the notion of dictionary of a given sequence and of Artificial Text and we show how these new tools can be used for information extraction purposes. We point out the versatility and generality of our method that applies to any kind of corpora of character strings independently of the type of coding behind them. We consider as a case study linguistic motivated problems and we present results for automatic language recognition, authorship attribution and self consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression approach to Information Extraction and Classification" by A. Baronchelli and V. Loreto. 15 pages; 5 figure

    Measuring complexity with zippers

    Get PDF
    Physics concepts have often been borrowed and independently developed by other fields of science. In this perspective a significant example is that of entropy in Information Theory. The aim of this paper is to provide a short and pedagogical introduction to the use of data compression techniques for the estimate of entropy and other relevant quantities in Information Theory and Algorithmic Information Theory. We consider in particular the LZ77 algorithm as case study and discuss how a zipper can be used for information extraction.Comment: 10 pages, 3 figure

    Helicase activity on DNA as a propagating front

    Get PDF
    We develop a propagating front analysis, in terms of a local probability of zipping, for the helicase activity of opening up a double stranded DNA (dsDNA). In a fixed-distance ensemble (conjugate to the fixed-force ensemble) the front separates the zipped and unzipped phases of a dsDNA and a drive acts locally around the front. Bounds from variational analysis and numerical estimates for the speed of a helicase are obtained. Different types of helicase behaviours can be distinguished by the nature of the drive.Comment: 5 pages, 5 eps figures; replaced by the published versio
    corecore