4 research outputs found

    Zipper unfolding of domes and prismoids

    Get PDF
    We study Hamiltonian unfolding—cutting a convex polyhedron along a Hamiltonian path of edges to unfold it without overlap—of two classes of polyhedra. Such unfoldings could be implemented by a single zipper, so they are also known as zipper edge unfoldings. First we consider domes, which are simple convex polyhedra. We find a family of domes whose graphs are Hamiltonian, yet any Hamiltonian unfolding causes overlap, making the domes Hamiltonian-ununfoldable. Second we turn to prismoids, which are another family of simple convex polyhedra. We show that any nested prismoid is Hamiltonian-unfoldable, and that for general prismoids, Hamiltonian unfoldability can be tested in polynomial time.National Science Foundation (U.S.) (Origami Design for Integration of Self-assembling Systems for Engineering Innovation Grant EFRI-1240383)National Science Foundation (U.S.) (Expedition Grant CCF-1138967

    Some Polycubes Have No Edge Zipper Unfolding

    Get PDF
    It is unknown whether every polycube (polyhedron constructed by gluing cubes face-to-face) has an edge unfolding, that is, cuts along edges of the cubes that unfolds the polycube to a single nonoverlapping polygon in the plane. Here we construct polycubes that have no *edge zipper unfolding* where the cut edges are further restricted to form a path.Comment: 11 pages, 10 figures, 9 references. Updated to match the version that will appear in the Canad. Conf. Comput. Geom., Aug. 202

    Zipper Unfoldability of Domes and Prismoids

    Get PDF
    We study Hamiltonian unfolding-cutting a convex polyhedron along a Hamiltonian path of edges to unfold it without overlap, which could be implemented by a single zipper-of two classes of polyhedra. First we consider domes, which are simple convex polyhedra. We find a series of domes whose graphs are Hamiltonian, yet any Hamiltonian unfolding causes overlap, making the domes Hamiltonian-ununfoldable. Second we turn to prismoids, which are another family of simple convex polyhedra. We show that any nested prismoid is Hamiltonian-unfoldable, and that for general prismoids, Hamiltonian unfoldability can be tested in polynomial time

    Zipper Unfolding of Domes and Prismoids

    No full text
    We study Hamiltonian unfolding—cutting a convex polyhedron along a Hamiltonian path of edges to unfold it without overlap—of two classes of polyhedra. Such unfoldings could be implemented by a single zipper, so they are also known as zipper edge unfoldings. First we consider domes, which are simple convex polyhedra. We find a family of domes whose graphs are Hamiltonian, yet any Hamiltonian unfolding causes overlap, making the domes Hamiltonian-ununfoldable. Second we turn to prismoids, which are another family of simple convex polyhedra. We show that any nested prismoid is Hamiltonian-unfoldable, and that for general prismoids, Hamiltonian unfoldability can be tested in polynomial time
    corecore