987 research outputs found

    Zeta Functions of Finite Graphs and Coverings, Part II

    Get PDF
    AbstractGalois theory for normal unramified coverings of finite irregular graphs (which may have multiedges and loops) is developed. Using Galois theory we provide a construction of intermediate coverings which generalizes the classical Cayley and Schreier graph constructions. Three different analogues of Artin L-functions are attached to these coverings. These three types are based on vertex variables, edge variables, and path variables. Analogues of all the standard Artin L-functions results for number fields are proved here for all three types of L-functions. In particular, we obtain factorization formulas for the zeta functions introduced in Part I as a product of L-functions. It is shown that the path L-functions, which depend only on the rank of the graph, can be specialized to give the edge L-functions, and these in turn can be specialized to give the vertex L-functions. The method of Bass is used to show that Ihara type quadratic formulas hold for vertex L-functions. Finally, we use the theory to give examples of two regular graphs (without multiple edges or loops) having the same vertex zeta functions. These graphs are also isospectral but not isomorphic

    Generalized characteristic polynomials of graph bundles

    Get PDF
    In this paper, we find computational formulae for generalized characteristic polynomials of graph bundles. We show that the number of spanning trees in a graph is the partial derivative (at (0,1)) of the generalized characteristic polynomial of the graph. Since the reciprocal of the Bartholdi zeta function of a graph can be derived from the generalized characteristic polynomial of a graph, consequently, the Bartholdi zeta function of a graph bundle can be computed by using our computational formulae

    The Zeta Function of a Hypergraph

    Get PDF
    We generalize the Ihara-Selberg zeta function to hypergraphs in a natural way. Hashimoto's factorization results for biregular bipartite graphs apply, leading to exact factorizations. For (d,r)(d,r)-regular hypergraphs, we show that a modified Riemann hypothesis is true if and only if the hypergraph is Ramanujan in the sense of Winnie Li and Patrick Sol\'e. Finally, we give an example to show how the generalized zeta function can be applied to graphs to distinguish non-isomorphic graphs with the same Ihara-Selberg zeta function.Comment: 24 pages, 6 figure

    A trace on fractal graphs and the Ihara zeta function

    Full text link
    Starting with Ihara's work in 1968, there has been a growing interest in the study of zeta functions of finite graphs, by Sunada, Hashimoto, Bass, Stark and Terras, Mizuno and Sato, to name just a few authors. Then, Clair and Mokhtari-Sharghi have studied zeta functions for infinite graphs acted upon by a discrete group of automorphisms. The main formula in all these treatments establishes a connection between the zeta function, originally defined as an infinite product, and the Laplacian of the graph. In this article, we consider a different class of infinite graphs. They are fractal graphs, i.e. they enjoy a self-similarity property. We define a zeta function for these graphs and, using the machinery of operator algebras, we prove a determinant formula, which relates the zeta function with the Laplacian of the graph. We also prove functional equations, and a formula which allows approximation of the zeta function by the zeta functions of finite subgraphs.Comment: 30 pages, 5 figures. v3: minor corrections, to appear on Transactions AM

    Ihara zeta functions for periodic simple graphs

    Full text link
    The definition and main properties of the Ihara zeta function for graphs are reviewed, focusing mainly on the case of periodic simple graphs. Moreover, we give a new proof of the associated determinant formula, based on the treatment developed by Stark and Terras for finite graphs.Comment: 17 pages, 7 figures. V3: minor correction
    corecore