117 research outputs found

    An ADMM Based Framework for AutoML Pipeline Configuration

    Full text link
    We study the AutoML problem of automatically configuring machine learning pipelines by jointly selecting algorithms and their appropriate hyper-parameters for all steps in supervised learning pipelines. This black-box (gradient-free) optimization with mixed integer & continuous variables is a challenging problem. We propose a novel AutoML scheme by leveraging the alternating direction method of multipliers (ADMM). The proposed framework is able to (i) decompose the optimization problem into easier sub-problems that have a reduced number of variables and circumvent the challenge of mixed variable categories, and (ii) incorporate black-box constraints along-side the black-box optimization objective. We empirically evaluate the flexibility (in utilizing existing AutoML techniques), effectiveness (against open source AutoML toolkits),and unique capability (of executing AutoML with practically motivated black-box constraints) of our proposed scheme on a collection of binary classification data sets from UCI ML& OpenML repositories. We observe that on an average our framework provides significant gains in comparison to other AutoML frameworks (Auto-sklearn & TPOT), highlighting the practical advantages of this framework

    Opportunities and risks of stochastic deep learning

    Get PDF
    This thesis studies opportunities and risks associated with stochasticity in deep learning that specifically manifest in the context of adversarial robustness and neural architecture search (NAS). On the one hand, opportunities arise because stochastic methods have a strong impact on robustness and generalisation, both from a theoretical and an empirical standpoint. In addition, they provide a framework for navigating non-differentiable search spaces, and for expressing data and model uncertainty. On the other hand, trade-offs (i.e., risks) that are coupled with these benefits need to be carefully considered. The three novel contributions that comprise the main body of this thesis are, by these standards, instances of opportunities and risks. In the context of adversarial robustness, our first contribution proves that the impact of an adversarial input perturbation on the output of a stochastic neural network (SNN) is theoretically bounded. Specifically, we demonstrate that SNNs are maximally robust when they achieve weight-covariance alignment, i.e., when the vectors of their classifier layer are aligned with the eigenvectors of that layer's covariance matrix. Based on our theoretical insights, we develop a novel SNN architecture with excellent empirical adversarial robustness and show that our theoretical guarantees also hold experimentally. Furthermore, we discover that SNNs partially owe their robustness to having a noisy loss landscape. Gradient-based adversaries find this landscape difficult to ascend during adversarial perturbation search, and therefore fail to create strong adversarial examples. We show that inducing a noisy loss landscape is not an effective defence mechanism, as it is easy to circumvent. To demonstrate that point, we develop a stochastic loss-smoothing extension to state-of-the-art gradient-based adversaries that allows them to attack successfully. Interestingly, our loss-smoothing extension can also (i) be successful against non-stochastic neural networks that defend by altering their loss landscape in different ways, and (ii) strengthen gradient-free adversaries. Our third and final contribution lies in the field of few-shot learning, where we develop a stochastic NAS method for adapting pre-trained neural networks to previously unseen classes, by observing only a few training examples of each new class. We determine that the adaptation of a pre-trained backbone is not as simple as adapting all of its parameters. In fact, adapting or fine-tuning the entire architecture is sub-optimal, as a lot of layers already encode knowledge optimally. Our NAS algorithm searches for the optimal subset of pre-trained parameters to be adapted or fine-tuned, which yields a significant improvement over the existing paradigm for few-shot adaptation

    Variational Cumulant Expansions for Intractable Distributions

    Full text link
    Intractable distributions present a common difficulty in inference within the probabilistic knowledge representation framework and variational methods have recently been popular in providing an approximate solution. In this article, we describe a perturbational approach in the form of a cumulant expansion which, to lowest order, recovers the standard Kullback-Leibler variational bound. Higher-order terms describe corrections on the variational approach without incurring much further computational cost. The relationship to other perturbational approaches such as TAP is also elucidated. We demonstrate the method on a particular class of undirected graphical models, Boltzmann machines, for which our simulation results confirm improved accuracy and enhanced stability during learning

    Information processing in biology

    Get PDF
    To survive, organisms must respond appropriately to a variety of challenges posed by a dynamic and uncertain environment. The mechanisms underlying such responses can in general be framed as input-output devices which map environment states (inputs) to associated responses (output. In this light, it is appealing to attempt to model these systems using information theory, a well developed mathematical framework to describe input-output systems. Under the information theoretical perspective, an organism’s behavior is fully characterized by the repertoire of its outputs under different environmental conditions. Due to natural selection, it is reasonable to assume this input-output mapping has been fine tuned in such a way as to maximize the organism’s fitness. If that is the case, it should be possible to abstract away the mechanistic implementation details and obtain the general principles that lead to fitness under a certain environment. These can then be used inferentially to both generate hypotheses about the underlying implementation as well as predict novel responses under external perturbations. In this work I use information theory to address the question of how biological systems generate complex outputs using relatively simple mechanisms in a robust manner. In particular, I will examine how communication and distributed processing can lead to emergent phenomena which allow collective systems to respond in a much richer way than a single organism could
    • …
    corecore