987 research outputs found

    On the unimodality of independence polynomials of some graphs

    Full text link
    In this paper we study unimodality problems for the independence polynomial of a graph, including unimodality, log-concavity and reality of zeros. We establish recurrence relations and give factorizations of independence polynomials for certain classes of graphs. As applications we settle some unimodality conjectures and problems.Comment: 17 pages, to appear in European Journal of Combinatoric

    Phases and geometry of the N=1 A_2 quiver gauge theory and matrix models

    Full text link
    We study the phases and geometry of the N=1 A_2 quiver gauge theory using matrix models and a generalized Konishi anomaly. We consider the theory both in the Coulomb and Higgs phases. Solving the anomaly equations, we find that a meromorphic one-form sigma(z)dz is naturally defined on the curve Sigma associated to the theory. Using the Dijkgraaf-Vafa conjecture, we evaluate the effective low-energy superpotential and demonstrate that its equations of motion can be translated into a geometric property of Sigma: sigma(z)dz has integer periods around all compact cycles. This ensures that there exists on Sigma a meromorphic function whose logarithm sigma(z)dz is the differential. We argue that the surface determined by this function is the N=2 Seiberg-Witten curve of the theory.Comment: 41 pages, 2 figures, JHEP style. v2: references adde

    Conifold Transitions in M-theory on Calabi-Yau Fourfolds with Background Fluxes

    Full text link
    We consider topology changing transitions for M-theory compactifications on Calabi-Yau fourfolds with background G-flux. The local geometry of the transition is generically a genus g curve of conifold singularities, which engineers a 3d gauge theory with four supercharges, near the intersection of Coulomb and Higgs branches. We identify a set of canonical, minimal flux quanta which solve the local quantization condition on G for a given geometry, including new solutions in which the flux is neither of horizontal nor vertical type. A local analysis of the flux superpotential shows that the potential has flat directions for a subset of these fluxes and the topologically different phases can be dynamically connected. For special geometries and background configurations, the local transitions extend to extremal transitions between global fourfold compactifications with flux. By a circle decompactification the M-theory analysis identifies consistent flux configurations in four-dimensional F-theory compactifications and flat directions in the deformation space of branes with bundles.Comment: 93 pages; v2: minor changes and references adde

    Holomorphic matrix integrals

    Full text link
    We study a class of holomorphic matrix models. The integrals are taken over middle dimensional cycles in the space of complex square matrices. As the size of the matrices tends to infinity, the distribution of eigenvalues is given by a measure with support on a collection of arcs in the complex planes. We show that the arcs are level sets of the imaginary part of a hyperelliptic integral connecting branch points.Comment: 9 pages, 1 figure, reference adde
    corecore