1,249 research outputs found

    Zero-Reachability in Probabilistic Multi-Counter Automata

    Full text link
    We study the qualitative and quantitative zero-reachability problem in probabilistic multi-counter systems. We identify the undecidable variants of the problems, and then we concentrate on the remaining two cases. In the first case, when we are interested in the probability of all runs that visit zero in some counter, we show that the qualitative zero-reachability is decidable in time which is polynomial in the size of a given pMC and doubly exponential in the number of counters. Further, we show that the probability of all zero-reaching runs can be effectively approximated up to an arbitrarily small given error epsilon > 0 in time which is polynomial in log(epsilon), exponential in the size of a given pMC, and doubly exponential in the number of counters. In the second case, we are interested in the probability of all runs that visit zero in some counter different from the last counter. Here we show that the qualitative zero-reachability is decidable and SquareRootSum-hard, and the probability of all zero-reaching runs can be effectively approximated up to an arbitrarily small given error epsilon > 0 (these result applies to pMC satisfying a suitable technical condition that can be verified in polynomial time). The proof techniques invented in the second case allow to construct counterexamples for some classical results about ergodicity in stochastic Petri nets.Comment: 20 page

    Probabilistic Timed Automata with Clock-Dependent Probabilities

    Get PDF
    Probabilistic timed automata are classical timed automata extended with discrete probability distributions over edges. We introduce clock-dependent probabilistic timed automata, a variant of probabilistic timed automata in which transition probabilities can depend linearly on clock values. Clock-dependent probabilistic timed automata allow the modelling of a continuous relationship between time passage and the likelihood of system events. We show that the problem of deciding whether the maximum probability of reaching a certain location is above a threshold is undecidable for clock-dependent probabilistic timed automata. On the other hand, we show that the maximum and minimum probability of reaching a certain location in clock-dependent probabilistic timed automata can be approximated using a region-graph-based approach.Comment: Full version of a paper published at RP 201

    Percentile Queries in Multi-Dimensional Markov Decision Processes

    Full text link
    Markov decision processes (MDPs) with multi-dimensional weights are useful to analyze systems with multiple objectives that may be conflicting and require the analysis of trade-offs. We study the complexity of percentile queries in such MDPs and give algorithms to synthesize strategies that enforce such constraints. Given a multi-dimensional weighted MDP and a quantitative payoff function ff, thresholds viv_i (one per dimension), and probability thresholds αi\alpha_i, we show how to compute a single strategy to enforce that for all dimensions ii, the probability of outcomes ρ\rho satisfying fi(ρ)≄vif_i(\rho) \geq v_i is at least αi\alpha_i. We consider classical quantitative payoffs from the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum, discounted sum). Our work extends to the quantitative case the multi-objective model checking problem studied by Etessami et al. in unweighted MDPs.Comment: Extended version of CAV 2015 pape

    Stochastic Timed Games Revisited

    Get PDF
    Stochastic timed games (STGs), introduced by Bouyer and Forejt, naturally generalize both continuous-time Markov chains and timed automata by providing a partition of the locations between those controlled by two players (Player Box and Player Diamond) with competing objectives and those governed by stochastic laws. Depending on the number of players - 2, 1, or 0 - subclasses of stochastic timed games are often classified as 2 1/2-player, 1 1/2-player, and 1/2-player games where the 1/2 symbolizes the presence of the stochastic "nature" player. For STGs with reachability objectives it is known that 1 1/2-player one-clock STGs are decidable for qualitative objectives, and that 2 1/2-player three-clock STGs are undecidable for quantitative reachability objectives. This paper further refines the gap in this decidability spectrum. We show that quantitative reachability objectives are already undecidable for 1 1/2 player four-clock STGs, and even under the time-bounded restriction for 2 1/2-player five-clock STGs. We also obtain a class of 1 1/2, 2 1/2 player STGs for which the quantitative reachability problem is decidable

    Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States

    Get PDF
    A vector addition system with states (VASS) consists of a finite set of states and counters. A transition changes the current state to the next state, and every counter is either incremented, or decremented, or left unchanged. A state and value for each counter is a configuration; and a computation is an infinite sequence of configurations with transitions between successive configurations. A probabilistic VASS consists of a VASS along with a probability distribution over the transitions for each state. Qualitative properties such as state and configuration reachability have been widely studied for VASS. In this work we consider multi-dimensional long-run average objectives for VASS and probabilistic VASS. For a counter, the cost of a configuration is the value of the counter; and the long-run average value of a computation for the counter is the long-run average of the costs of the configurations in the computation. The multi-dimensional long-run average problem given a VASS and a threshold value for each counter, asks whether there is a computation such that for each counter the long-run average value for the counter does not exceed the respective threshold. For probabilistic VASS, instead of the existence of a computation, we consider whether the expected long-run average value for each counter does not exceed the respective threshold. Our main results are as follows: we show that the multi-dimensional long-run average problem (a) is NP-complete for integer-valued VASS; (b) is undecidable for natural-valued VASS (i.e., nonnegative counters); and (c) can be solved in polynomial time for probabilistic integer-valued VASS, and probabilistic natural-valued VASS when all computations are non-terminating

    Synthesising Strategy Improvement and Recursive Algorithms for Solving 2.5 Player Parity Games

    Get PDF
    2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms for 2.5 player reachability games and recursive algorithms for the qualitative analysis of parity games. We present a method that - in contrast to existing techniques - tackles both aspects with the best suited approach and works exclusively on the 2.5 player game itself. The resulting technique is powerful enough to handle games with several million states
    • 

    corecore