12,929 research outputs found

    Maintenance Strategies to Reduce Downtime Due to Machine Positional Errors

    Get PDF
    Manufacturing strives to reduce waste and increase Overall Equipment Effectiveness (OEE). When managing machine tool maintenance a manufacturer must apply an appropriate decision technique in order to reveal hidden costs associated with production losses, reduce equipment downtime competently and similarly identify the machines’ performance. Total productive maintenance (TPM) is a maintenance program that involves concepts for maintaining plant and equipment effectively. OEE is a powerful metric of manufacturing performance incorporating measures of the utilisation, yield and efficiency of a given process, machine or manufacturing line. It supports TPM initiatives by accurately tracking progress towards achieving “perfect production.” This paper presents a review of maintenance management methodologies and their application to positional error calibration decision-making. The purpose of this review is to evaluate the contribution of maintenance strategies, in particular TPM, towards improving manufacturing performance, and how they could be applied to reduce downtime due to inaccuracy of the machine. This is to find a balance between predictive calibration, on-machine checking and lost production due to inaccuracy. This work redefines the role of maintenance management techniques and develops a framework to support the process of implementing a predictive calibration program as a prime method to supporting the change of philosophy for machine tool calibration decision making. Keywords—maintenance strategies, down time, OEE, TPM, decision making, predictive calibration

    The Cosmic Background Imager

    Get PDF
    Design and performance details are given for the Cosmic Background Imager (CBI), an interferometer array that is measuring the power spectrum of fluctuations in the cosmic microwave background radiation (CMBR) for multipoles in the range 400 < l < 3500. The CBI is located at an altitude of 5000 m in the Atacama Desert in northern Chile. It is a planar synthesis array with 13 0.9-m diameter antennas on a 6-m diameter tracking platform. Each antenna has a cooled, low-noise receiver operating in the 26-36 GHz band. Signals are cross-correlated in an analog filterbank correlator with ten 1 GHz bands. This allows spectral index measurements which can be used to distinguish CMBR signals from diffuse galactic foregrounds. A 1.2 kHz 180-deg phase switching scheme is used to reject cross-talk and low-frequency pick-up in the signal processing system. The CBI has a 3-axis mount which allows the tracking platform to be rotated about the optical axis, providing improved (u,v) coverage and a powerful discriminant against false signals generated in the receiving electronics. Rotating the tracking platform also permits polarization measurements when some of the antennas are configured for the orthogonal polarization.Comment: 14 pages. Accepted for publication in PASP. See also http://www.astro.caltech.edu/~tjp/CBI

    레이져 포인터를 이용한 Product-of-Exponentials 기반 직렬로봇 기구학적 보정 알고리즘

    Get PDF
    학위논문(석사)--서울대학교 대학원 :공과대학 기계항공공학부,2019. 8. 박종우.This thesis proposes a kinematic calibration algorithm for serial robots based on a minimal product of exponentials (POE) forward kinematic model. Generally, robot calibration requires the measurement of the end-effector frame (position and orientation), which typically requires special measurement equipment. To avoid using complex measurement devices and to make the calibration easy to implement for even the most general serial robots, in our approach we attach a laser pointer to the end-effector, which is then aimed at a set of fixed known reference points in the plane. Treating the laser as a prismatic joint and the reference point as the tip, kinematic calibration is then performed by minimizing the Cartesian position difference between the measured and estimated Cartesian tip position of the robot. Our method is validated via simulations and experiments involving a seven-dof industrial robot arm.위 논문은 Minimal POE (product of exponentials) 정기구학 모델에 기반한 직렬로봇 캘리브레이션 알고리즘을 제안한다. 일반적으로 로봇 캘리브레이션은 엔드이펙터 프레임의 위치와 방향을 측정하는 작업을 수행해야 하는데, 이는 특별한 측정장비를 필요로 한다. 복잡한 측정장비의 사용 회피와 다양한 형태의 직렬로봇에 쉽게 응용하기 위해, 이번 논문에서는 엔드이펙터에 레이저포인터를 부착하여 평면 위의 위치가 알려진 참조점들을 추적하여 캘리브레이션을 수행하는 방법을 제시한다. 캘리브레이션은 레이저포인터와 참조점을 각각 선형조인트와 팁으로 생각하여 로봇 팁 위치의 측정값과 추정값의 차이를 최소화하는 과정으로 진행된다. 7자유도 산업용 로봇 팔에 대해 시뮬레이션과 실제 공간에서의 실험을 통해 캘리브레이션 방식을 검증했다.1 Introduction 1 1.1 Existing Methods 2 1.2 Contributions of This Thesis 4 2 Kinematics Preliminaries 6 2.1 Geometric Background 6 2.1.1 The Lie Group Formulations 6 2.1.2 Screw Motions 8 2.1.3 Adjoint Representation 9 2.2 Forward Kinematics 9 2.2.1 The Product of Exponentials Formula 9 2.2.2 The Minimal Product of Exponentials Formula 11 2.3 Kinematic Error Model 14 2.3.1 Linearizing the Forward Kinematics 15 3 Calibration Methodology 19 3.1 The Concept of the Method 19 3.1.1 Forward Kinematics of a Robot With a Laser Pointer 19 3.1.2 The Error Model for Calibration 20 3.2 Calibration Algorithm 23 3.2.1 The Estimation Method of the Length of the Laser 24 3.2.2 Identification Process 25 4 Experiments 29 4.1 Simulation 1: 6-Dof Robot With Precise Data 29 4.2 Simulation 2: 6-Dof Robot With Noisy Data 31 4.3 Experiments on a 7-Dof Robot 34 5 Conclusion 39 A Appendix 41 A.1 Conversion From dq to dS and dSM [1] 41 Bibliography 43 Abstract 46Maste

    A laser spectrometer and wavemeter for pulsed lasers

    Get PDF
    The design, construction, calibration, and evaluation of a pulsed laser wavemeter and spectral analyzer are described. This instrument, called the Laserscope for its oscilloscope-like display of laser spectral structure, was delivered to NASA Langley Research Center as a prototype of a laboratory instrument. The key component is a multibeam Fizeau wedge interferometer, providing high (0.2 pm) spectral resolution and a linear dispersion of spectral information, ideally suited to linear array photodiode detectors. Even operating alone, with the classic order-number ambiguity of interferometers unresolved, this optical element will provide a fast, real-time display of the spectral structure of a laser output. If precise wavelength information is also desired then additional stages must be provided to obtain a wavelength measurement within the order-number uncertainty, i.e., within the free spectral range of the Fizeau wedge interferometer. A Snyder (single-beam Fizeau) wedge is included to provide this initial wavelength measurement. Difficulties in achieving the required wide-spectrum calibration limit the usefulness of this function

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Laser Wire Scanner Compton Scattering Techniques for the Measurement of the Transverse Beam Size of Particle Beams at Future Linear Colliders

    Full text link
    This archive summarizes a working paper and conference proceedings related to laser wire scanner development for the Future Linear Collider (FLC) in the years 2001 to 2006. In particular the design, setup and data taking for the laser wire experiments at PETRA II and CT2 are described. The material is focused on the activities undertaken by Royal Holloway University of London (RHUL).Comment: 61 page
    corecore