115 research outputs found

    Trustworthy Communications across Parallel Asynchronous Channels with Glitches

    Get PDF
    Transmission across asynchronous communication channels is subject to laser injection attacks which cause glitches – pulses that are added to the transmitted signal at arbitrary times. This paper presents self-synchronizing zero-latency or near zero-latency coding schemes that require no acknowledge and can perfectly decode any transmission distorted by glitches (as long as the percentage of glitches is not too large)

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed

    Asynchronous Techniques for System-on-Chip Design

    Full text link

    Architecting Secure Processor Caches

    Get PDF
    Caches in modern processors enable fast access to data and help alleviate the performance overheads from slow access to DRAM main-memory. While sharing of cache resources between multiple cores, especially the last-level cache, boosts cache utilization and improves system performance, it has been shown to cause serious security vulnerabilities in the form cache side-channel attacks. Different cores of a system can simultaneously run sensitive and malicious applications which can contend for the shared cache space. As a result, accesses of a sensitive application can influence the cache utilization and the execution time of a malicious application, introducing a side-channel of information leakage. Such cache interactions between a sensitive victim and a malicious spy have been shown to allow leakage of encryption keys, user-sensitive data such as files or browsing histories, confidential intellectual property such as machine-learning models, etc. Similarly, such cache interactions can also be used as a channel for covert communication be- tween two colluding malicious applications, when direct communication via network ports is disabled. The focus of this thesis is to develop principled and practical mitigation for such cache side channel and covert channel attacks. To develop principled defenses, it is necessary to develop a deep understanding of attacks. So, first, this thesis investigates the capabilities of attackers and in the process develops a new cache covert channel attack called Streamline, which is considerably faster than current state-of-the-art attacks, with fewer requirements. With an asynchronous and flushless information transmission protocol, Streamline reaches bit-rates of more than 1 MB/s while being applicable to all ISAs and micro-architectures. This demonstrates the need for effective defenses against cache attacks across all platforms. Second, this thesis develops new principled and practical defenses utilizing cache lo- cation randomization. Randomized caches obfuscate the mappings of addresses to cache locations to prevent malicious programs from inferring contention patterns on shared last- level caches with victim programs. However, successive defenses relying on randomization have been broken by recent attacks. To end the arms race in randomized caches, this thesis proposes a principled defense, MIRAGE, which provides the security of a fully-associative design in a practical manner for randomized caches. This eliminates set-conflicts and set- conflict based cache attacks in a future-proof manner. Third, this thesis explores cache-partitioning based defenses to eliminate all potential cache side channels through shared last-level caches. Such defenses map mistrusting applications to isolated cache partitions, thus preventing any information leakage across applications through cache state changes. However, existing solutions are not scalable or do not allow flexible usage of DRAM and cache resources. To address these problems, this thesis provides a scalable and flexible cache-isolation framework, Bespoke Cache Enclaves, supporting hundreds of partitions independent of memory utilization. This work enables practical adoption of cache-isolation defenses against cache side-channel attacks. Lastly, this thesis develops techniques to secure caches against exploitation in transient execution attacks. Attacks like Spectre and Meltdown exploit processor speculation to illegally access secrets and leak these out through cache covert channels, i.e., making transient changes to processor caches. This thesis enables CleanupSpec, one of the first defenses against such attacks, which reverses speculative modifications to caches on mis- speculations, to limit such transient information leakage via caches. This solution prevents caches from being exploited by attacks like Spectre with minimal overheads. Overall, this thesis enables several techniques that provide principled yet practical security for processor caches against side channels and covert channels. These techniques can potentially enable the wide adoption of secure cache designs in future processors and support efforts to enable confidential computing in systems.Ph.D

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    Get PDF
    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness

    NASA SERC 1990 Symposium on VLSI Design

    Get PDF
    This document contains papers presented at the first annual NASA Symposium on VLSI Design. NASA's involvement in this event demonstrates a need for research and development in high performance computing. High performance computing addresses problems faced by the scientific and industrial communities. High performance computing is needed in: (1) real-time manipulation of large data sets; (2) advanced systems control of spacecraft; (3) digital data transmission, error correction, and image compression; and (4) expert system control of spacecraft. Clearly, a valuable technology in meeting these needs is Very Large Scale Integration (VLSI). This conference addresses the following issues in VLSI design: (1) system architectures; (2) electronics; (3) algorithms; and (4) CAD tools
    • …
    corecore