2,346 research outputs found

    Transductive Zero-Shot Learning with a Self-training dictionary approach

    Full text link
    As an important and challenging problem in computer vision, zero-shot learning (ZSL) aims at automatically recognizing the instances from unseen object classes without training data. To address this problem, ZSL is usually carried out in the following two aspects: 1) capturing the domain distribution connections between seen classes data and unseen classes data; and 2) modeling the semantic interactions between the image feature space and the label embedding space. Motivated by these observations, we propose a bidirectional mapping based semantic relationship modeling scheme that seeks for crossmodal knowledge transfer by simultaneously projecting the image features and label embeddings into a common latent space. Namely, we have a bidirectional connection relationship that takes place from the image feature space to the latent space as well as from the label embedding space to the latent space. To deal with the domain shift problem, we further present a transductive learning approach that formulates the class prediction problem in an iterative refining process, where the object classification capacity is progressively reinforced through bootstrapping-based model updating over highly reliable instances. Experimental results on three benchmark datasets (AwA, CUB and SUN) demonstrate the effectiveness of the proposed approach against the state-of-the-art approaches

    Class label autoencoder for zero-shot learning

    Full text link
    Existing zero-shot learning (ZSL) methods usually learn a projection function between a feature space and a semantic embedding space(text or attribute space) in the training seen classes or testing unseen classes. However, the projection function cannot be used between the feature space and multi-semantic embedding spaces, which have the diversity characteristic for describing the different semantic information of the same class. To deal with this issue, we present a novel method to ZSL based on learning class label autoencoder (CLA). CLA can not only build a uniform framework for adapting to multi-semantic embedding spaces, but also construct the encoder-decoder mechanism for constraining the bidirectional projection between the feature space and the class label space. Moreover, CLA can jointly consider the relationship of feature classes and the relevance of the semantic classes for improving zero-shot classification. The CLA solution can provide both unseen class labels and the relation of the different classes representation(feature or semantic information) that can encode the intrinsic structure of classes. Extensive experiments demonstrate the CLA outperforms state-of-art methods on four benchmark datasets, which are AwA, CUB, Dogs and ImNet-2

    Domain-Invariant Projection Learning for Zero-Shot Recognition

    Full text link
    Zero-shot learning (ZSL) aims to recognize unseen object classes without any training samples, which can be regarded as a form of transfer learning from seen classes to unseen ones. This is made possible by learning a projection between a feature space and a semantic space (e.g. attribute space). Key to ZSL is thus to learn a projection function that is robust against the often large domain gap between the seen and unseen classes. In this paper, we propose a novel ZSL model termed domain-invariant projection learning (DIPL). Our model has two novel components: (1) A domain-invariant feature self-reconstruction task is introduced to the seen/unseen class data, resulting in a simple linear formulation that casts ZSL into a min-min optimization problem. Solving the problem is non-trivial, and a novel iterative algorithm is formulated as the solver, with rigorous theoretic algorithm analysis provided. (2) To further align the two domains via the learned projection, shared semantic structure among seen and unseen classes is explored via forming superclasses in the semantic space. Extensive experiments show that our model outperforms the state-of-the-art alternatives by significant margins.Comment: Accepted to NIPS 201

    Zero-Shot Learning via Latent Space Encoding

    Full text link
    Zero-Shot Learning (ZSL) is typically achieved by resorting to a class semantic embedding space to transfer the knowledge from the seen classes to unseen ones. Capturing the common semantic characteristics between the visual modality and the class semantic modality (e.g., attributes or word vector) is a key to the success of ZSL. In this paper, we propose a novel encoder-decoder approach, namely Latent Space Encoding (LSE), to connect the semantic relations of different modalities. Instead of requiring a projection function to transfer information across different modalities like most previous work, LSE per- forms the interactions of different modalities via a feature aware latent space, which is learned in an implicit way. Specifically, different modalities are modeled separately but optimized jointly. For each modality, an encoder-decoder framework is performed to learn a feature aware latent space via jointly maximizing the recoverability of the original space from the latent space and the predictability of the latent space from the original space. To relate different modalities together, their features referring to the same concept are enforced to share the same latent codings. In this way, the common semantic characteristics of different modalities are generalized with the latent representations. Another property of the proposed approach is that it is easily extended to more modalities. Extensive experimental results on four benchmark datasets (AwA, CUB, aPY, and ImageNet) clearly demonstrate the superiority of the proposed approach on several ZSL tasks, including traditional ZSL, generalized ZSL, and zero-shot retrieval (ZSR)

    Zero and Few Shot Learning with Semantic Feature Synthesis and Competitive Learning

    Full text link
    Zero-shot learning (ZSL) is made possible by learning a projection function between a feature space and a semantic space (e.g.,~an attribute space). Key to ZSL is thus to learn a projection that is robust against the often large domain gap between the seen and unseen class domains. In this work, this is achieved by unseen class data synthesis and robust projection function learning. Specifically, a novel semantic data synthesis strategy is proposed, by which semantic class prototypes (e.g., attribute vectors) are used to simply perturb seen class data for generating unseen class ones. As in any data synthesis/hallucination approach, there are ambiguities and uncertainties on how well the synthesised data can capture the targeted unseen class data distribution. To cope with this, the second contribution of this work is a novel projection learning model termed competitive bidirectional projection learning (BPL) designed to best utilise the ambiguous synthesised data. Specifically, we assume that each synthesised data point can belong to any unseen class; and the most likely two class candidates are exploited to learn a robust projection function in a competitive fashion. As a third contribution, we show that the proposed ZSL model can be easily extended to few-shot learning (FSL) by again exploiting semantic (class prototype guided) feature synthesis and competitive BPL. Extensive experiments show that our model achieves the state-of-the-art results on both problems.Comment: Submitted to IEEE TPAM

    Bi-Adversarial Auto-Encoder for Zero-Shot Learning

    Full text link
    Existing generative Zero-Shot Learning (ZSL) methods only consider the unidirectional alignment from the class semantics to the visual features while ignoring the alignment from the visual features to the class semantics, which fails to construct the visual-semantic interactions well. In this paper, we propose to synthesize visual features based on an auto-encoder framework paired with bi-adversarial networks respectively for visual and semantic modalities to reinforce the visual-semantic interactions with a bi-directional alignment, which ensures the synthesized visual features to fit the real visual distribution and to be highly related to the semantics. The encoder aims at synthesizing real-like visual features while the decoder forces both the real and the synthesized visual features to be more related to the class semantics. To further capture the discriminative information of the synthesized visual features, both the real and synthesized visual features are forced to be classified into the correct classes via a classification network. Experimental results on four benchmark datasets show that the proposed approach is particularly competitive on both the traditional ZSL and the generalized ZSL tasks

    Visual Data Synthesis via GAN for Zero-Shot Video Classification

    Full text link
    Zero-Shot Learning (ZSL) in video classification is a promising research direction, which aims to tackle the challenge from explosive growth of video categories. Most existing methods exploit seen-to-unseen correlation via learning a projection between visual and semantic spaces. However, such projection-based paradigms cannot fully utilize the discriminative information implied in data distribution, and commonly suffer from the information degradation issue caused by "heterogeneity gap". In this paper, we propose a visual data synthesis framework via GAN to address these problems. Specifically, both semantic knowledge and visual distribution are leveraged to synthesize video feature of unseen categories, and ZSL can be turned into typical supervised problem with the synthetic features. First, we propose multi-level semantic inference to boost video feature synthesis, which captures the discriminative information implied in joint visual-semantic distribution via feature-level and label-level semantic inference. Second, we propose Matching-aware Mutual Information Correlation to overcome information degradation issue, which captures seen-to-unseen correlation in matched and mismatched visual-semantic pairs by mutual information, providing the zero-shot synthesis procedure with robust guidance signals. Experimental results on four video datasets demonstrate that our approach can improve the zero-shot video classification performance significantly.Comment: 7 pages, accepted by International Joint Conference on Artificial Intelligence (IJCAI) 201

    Information Bottleneck Constrained Latent Bidirectional Embedding for Zero-Shot Learning

    Full text link
    Zero-shot learning (ZSL) aims to recognize novel classes by transferring semantic knowledge from seen classes to unseen classes. Though many ZSL methods rely on a direct mapping between the visual and the semantic space, the calibration deviation and hubness problem limit the generalization capability to unseen classes. Recently emerged generative ZSL methods generate unseen image features to transform ZSL into a supervised classification problem. However, most generative models still suffer from the seen-unseen bias problem as only seen data is used for training. To address these issues, we propose a novel bidirectional embedding based generative model with a tight visual-semantic coupling constraint. We learn a unified latent space that calibrates the embedded parametric distributions of both visual and semantic spaces. Since the embedding from high-dimensional visual features comprise much non-semantic information, the alignment of visual and semantic in latent space would inevitably been deviated. Therefore, we introduce information bottleneck (IB) constraint to ZSL for the first time to preserve essential attribute information during the mapping. Specifically, we utilize the uncertainty estimation and the wake-sleep procedure to alleviate the feature noises and improve model abstraction capability. In addition, our method can be easily extended to transductive ZSL setting by generating labels for unseen images. We then introduce a robust loss to solve this label noise problem. Extensive experimental results show that our method outperforms the state-of-the-art methods in different ZSL settings on most benchmark datasets. The code will be available at https://github.com/osierboy/IBZSL.Comment: The new version is not complet

    Bidirectional Mapping Coupled GAN for Generalized Zero-Shot Learning

    Full text link
    Bidirectional mapping-based generalized zero-shot learning (GZSL) methods rely on the quality of synthesized features to recognize seen and unseen data. Therefore, learning a joint distribution of seen-unseen domains and preserving domain distinction is crucial for these methods. However, existing methods only learn the underlying distribution of seen data, although unseen class semantics are available in the GZSL problem setting. Most methods neglect retaining domain distinction and use the learned distribution to recognize seen and unseen data. Consequently, they do not perform well. In this work, we utilize the available unseen class semantics alongside seen class semantics and learn joint distribution through a strong visual-semantic coupling. We propose a bidirectional mapping coupled generative adversarial network (BMCoGAN) by extending the coupled generative adversarial network into a dual-domain learning bidirectional mapping model. We further integrate a Wasserstein generative adversarial optimization to supervise the joint distribution learning. We design a loss optimization for retaining domain distinctive information in the synthesized features and reducing bias towards seen classes, which pushes synthesized seen features towards real seen features and pulls synthesized unseen features away from real seen features. We evaluate BMCoGAN on benchmark datasets and demonstrate its superior performance against contemporary methods

    Learning Structured Semantic Embeddings for Visual Recognition

    Full text link
    Numerous embedding models have been recently explored to incorporate semantic knowledge into visual recognition. Existing methods typically focus on minimizing the distance between the corresponding images and texts in the embedding space but do not explicitly optimize the underlying structure. Our key observation is that modeling the pairwise image-image relationship improves the discrimination ability of the embedding model. In this paper, we propose the structured discriminative and difference constraints to learn visual-semantic embeddings. First, we exploit the discriminative constraints to capture the intra- and inter-class relationships of image embeddings. The discriminative constraints encourage separability for image instances of different classes. Second, we align the difference vector between a pair of image embeddings with that of the corresponding word embeddings. The difference constraints help regularize image embeddings to preserve the semantic relationships among word embeddings. Extensive evaluations demonstrate the effectiveness of the proposed structured embeddings for single-label classification, multi-label classification, and zero-shot recognition.Comment: 9 pages, 6 figures, 5 tables, conferenc
    corecore