6,350 research outputs found

    Zero-Shot Knowledge Distillation in Deep Networks

    Full text link
    Knowledge distillation deals with the problem of training a smaller model (Student) from a high capacity source model (Teacher) so as to retain most of its performance. Existing approaches use either the training data or meta-data extracted from it in order to train the Student. However, accessing the dataset on which the Teacher has been trained may not always be feasible if the dataset is very large or it poses privacy or safety concerns (e.g., bio-metric or medical data). Hence, in this paper, we propose a novel data-free method to train the Student from the Teacher. Without even using any meta-data, we synthesize the Data Impressions from the complex Teacher model and utilize these as surrogates for the original training data samples to transfer its learning to Student via knowledge distillation. We, therefore, dub our method "Zero-Shot Knowledge Distillation" and demonstrate that our framework results in competitive generalization performance as achieved by distillation using the actual training data samples on multiple benchmark datasets.Comment: Accepted in ICML 2019, codes will be available at https://github.com/vcl-iisc/ZSK

    Generative Low-Shot Network Expansion

    Full text link
    Conventional deep learning classifiers are static in the sense that they are trained on a predefined set of classes and learning to classify a novel class typically requires re-training. In this work, we address the problem of Low-Shot network expansion learning. We introduce a learning framework which enables expanding a pre-trained (base) deep network to classify novel classes when the number of examples for the novel classes is particularly small. We present a simple yet powerful hard distillation method where the base network is augmented with additional weights to classify the novel classes, while keeping the weights of the base network unchanged. We show that since only a small number of weights needs to be trained, the hard distillation excels in low-shot training scenarios. Furthermore, hard distillation avoids detriment to classification performance on the base classes. Finally, we show that low-shot network expansion can be done with a very small memory footprint by using a compact generative model of the base classes training data with only a negligible degradation relative to learning with the full training set

    Semantic-Aware Knowledge Preservation for Zero-Shot Sketch-Based Image Retrieval

    Full text link
    Sketch-based image retrieval (SBIR) is widely recognized as an important vision problem which implies a wide range of real-world applications. Recently, research interests arise in solving this problem under the more realistic and challenging setting of zero-shot learning. In this paper, we investigate this problem from the viewpoint of domain adaptation which we show is critical in improving feature embedding in the zero-shot scenario. Based on a framework which starts with a pre-trained model on ImageNet and fine-tunes it on the training set of SBIR benchmark, we advocate the importance of preserving previously acquired knowledge, e.g., the rich discriminative features learned from ImageNet, to improve the model's transfer ability. For this purpose, we design an approach named Semantic-Aware Knowledge prEservation (SAKE), which fine-tunes the pre-trained model in an economical way and leverages semantic information, e.g., inter-class relationship, to achieve the goal of knowledge preservation. Zero-shot experiments on two extended SBIR datasets, TU-Berlin and Sketchy, verify the superior performance of our approach. Extensive diagnostic experiments validate that knowledge preserved benefits SBIR in zero-shot settings, as a large fraction of the performance gain is from the more properly structured feature embedding for photo images. Code is available at: https://github.com/qliu24/SAKE.Comment: To appear in ICCV 201

    Structure-Level Knowledge Distillation For Multilingual Sequence Labeling

    Full text link
    Multilingual sequence labeling is a task of predicting label sequences using a single unified model for multiple languages. Compared with relying on multiple monolingual models, using a multilingual model has the benefit of a smaller model size, easier in online serving, and generalizability to low-resource languages. However, current multilingual models still underperform individual monolingual models significantly due to model capacity limitations. In this paper, we propose to reduce the gap between monolingual models and the unified multilingual model by distilling the structural knowledge of several monolingual models (teachers) to the unified multilingual model (student). We propose two novel KD methods based on structure-level information: (1) approximately minimizes the distance between the student's and the teachers' structure level probability distributions, (2) aggregates the structure-level knowledge to local distributions and minimizes the distance between two local probability distributions. Our experiments on 4 multilingual tasks with 25 datasets show that our approaches outperform several strong baselines and have stronger zero-shot generalizability than both the baseline model and teacher models.Comment: Accepted to ACL 2020, camera-ready. 14 page

    Multi-layer Pruning Framework for Compressing Single Shot MultiBox Detector

    Full text link
    We propose a framework for compressing state-of-the-art Single Shot MultiBox Detector (SSD). The framework addresses compression in the following stages: Sparsity Induction, Filter Selection, and Filter Pruning. In the Sparsity Induction stage, the object detector model is sparsified via an improved global threshold. In Filter Selection & Pruning stage, we select and remove filters using sparsity statistics of filter weights in two consecutive convolutional layers. This results in the model with the size smaller than most existing compact architectures. We evaluate the performance of our framework with multiple datasets and compare over multiple methods. Experimental results show that our method achieves state-of-the-art compression of 6.7X and 4.9X on PASCAL VOC dataset on models SSD300 and SSD512 respectively. We further show that the method produces maximum compression of 26X with SSD512 on German Traffic Sign Detection Benchmark (GTSDB). Additionally, we also empirically show our method's adaptability for classification based architecture VGG16 on datasets CIFAR and German Traffic Sign Recognition Benchmark (GTSRB) achieving a compression rate of 125X and 200X with the reduction in flops by 90.50% and 96.6% respectively with no loss of accuracy. In addition to this, our method does not require any special libraries or hardware support for the resulting compressed models.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Visual Relationship Detection with Language prior and Softmax

    Full text link
    Visual relationship detection is an intermediate image understanding task that detects two objects and classifies a predicate that explains the relationship between two objects in an image. The three components are linguistically and visually correlated (e.g. "wear" is related to "person" and "shirt", while "laptop" is related to "table" and "on") thus, the solution space is huge because there are many possible cases between them. Language and visual modules are exploited and a sophisticated spatial vector is proposed. The models in this work outperformed the state of arts without costly linguistic knowledge distillation from a large text corpus and building complex loss functions. All experiments were only evaluated on Visual Relationship Detection and Visual Genome dataset.Comment: 6 pages, 4 figure

    Creating Lightweight Object Detectors with Model Compression for Deployment on Edge Devices

    Full text link
    To achieve lightweight object detectors for deployment on the edge devices, an effective model compression pipeline is proposed in this paper. The compression pipeline consists of automatic channel pruning for the backbone, fixed channel deletion for the branch layers and knowledge distillation for the guidance learning. As results, the Resnet50-v1d is auto-pruned and fine-tuned on ImageNet to attain a compact base model as the backbone of object detector. Then, lightweight object detectors are implemented with proposed compression pipeline. For instance, the SSD-300 with model size=16.3MB, FLOPS=2.31G, and mAP=71.2 is created, revealing a better result than SSD-300-MobileNet.Comment: lightweight detector, automatic channel pruning, fixed channel deletion, knowledge distillatio

    Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning

    Full text link
    As a step towards developing zero-shot task generalization capabilities in reinforcement learning (RL), we introduce a new RL problem where the agent should learn to execute sequences of instructions after learning useful skills that solve subtasks. In this problem, we consider two types of generalizations: to previously unseen instructions and to longer sequences of instructions. For generalization over unseen instructions, we propose a new objective which encourages learning correspondences between similar subtasks by making analogies. For generalization over sequential instructions, we present a hierarchical architecture where a meta controller learns to use the acquired skills for executing the instructions. To deal with delayed reward, we propose a new neural architecture in the meta controller that learns when to update the subtask, which makes learning more efficient. Experimental results on a stochastic 3D domain show that the proposed ideas are crucial for generalization to longer instructions as well as unseen instructions.Comment: ICML 201

    Learning to Learn: Meta-Critic Networks for Sample Efficient Learning

    Full text link
    We propose a novel and flexible approach to meta-learning for learning-to-learn from only a few examples. Our framework is motivated by actor-critic reinforcement learning, but can be applied to both reinforcement and supervised learning. The key idea is to learn a meta-critic: an action-value function neural network that learns to criticise any actor trying to solve any specified task. For supervised learning, this corresponds to the novel idea of a trainable task-parametrised loss generator. This meta-critic approach provides a route to knowledge transfer that can flexibly deal with few-shot and semi-supervised conditions for both reinforcement and supervised learning. Promising results are shown on both reinforcement and supervised learning problems.Comment: Technical report, 12 pages, 3 figures, 2 table

    Learning Metrics from Teachers: Compact Networks for Image Embedding

    Full text link
    Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5\% to 44.6\%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semi-supervised learning and cross quality distillation. (Code is available at https://github.com/yulu0724/EmbeddingDistillation.)Comment: To appear at CVPR 201
    • …
    corecore