143 research outputs found

    IGBT-SiC dual fed open end winding PMSM drive

    Get PDF
    This paper proposes a dual fed common dc link inverter Open End Winding-Permanent Magnet Synchronous Motor (OEW-PMSM) Drive. In order to increase the system efficiency a dual technology converter is used, with one inverter composed of standard IGBT devices and the other composed of fast switching Silicon Carbide (SiC) devices. The common dc link OEW configuration allows the zero-sequence current (ZSC) to flow freely, and the low time constants of the zero-circuit can lead to high zero sequence current flow, with associated losses and stress on the power devices. To avoid this, the zero-sequence voltage produced by the switching combinations adopted to synthetize the control signals needs to be instantaneously eliminated. A novel modulation for dual converter configurations is proposed to eliminate the zero-sequence voltage(ZSV)

    A Novel Zero-Sequence Current Elimination PWM Scheme for an Open-Winding PMSM With Common DC Bus

    Get PDF
    This paper introduces a novel pulse width modulation (PWM) scheme for an OW-PMSM driven by dual two-level three-phase inverter with common dc bus which can effectively deal with the inherent zero-sequence current (ZSC) problem. Based on conventional symmetrical unipolar double frequency SPWM scheme with appropriate phase-shift, the common mode voltage (CMV) of two inverters can keep the same and cancel out each other to eliminate the modulated zero sequence voltage (ZSV) disturbance source. In this case, the double frequency effect can be retained to reduce the ac side current ripple and suppress both the corresponding motor vibration and acoustic noise which is advantageous to improve the synthetic performance of motor. The DC bus voltage utilization of the novel PWM scheme is proved to reach the maximum value as same as the conventional modulated ZSV elimination scheme. Meanwhile, a zero-sequence controller is designed to suppress ZSC by further adjusting the two CMVs to counteract other zero-sequence disturbance sources. To verify the analysis, the proposed PWM technique associated with the control method is implemented in an OW-PMSM experimental setup to validate the superiority of proposed method

    Dual‐Inverter Circuit Topologies for Supplying Open‐Ended Loads

    Get PDF
    Power electronic converters are nowadays the most suitable solution to provide a variable voltage/current in industry. The most commonly used power converter is the three-phase two-level voltage source inverter which transforms a direct-current input voltage into alternating-current output voltage with adjustable magnitude and frequency. Power inverters are used to supply three-phase loads which are typically connected in wye or delta configurations. However, in previous years, a type of connection consisting on leaving both terminal ends of the load opened has been studied as an alternative to standard wye or delta connection. To supply loads with this type of connection, two power inverters (one at each terminal end of the load) are required in a circuit topology called dual-inverter. In this chapter, a general study of the dual-inverter topology is presented. The advantages and issues of such converter are studied and different modulation strategies are shown and discussed. Moreover, multilevel dual-inverter converters are presented as an extension to the basic two-level idea. For evaluation purposes, simulations results are presented

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    EFFICIENCY AND RELIABILITY ENHANCEMENT OF MULTIPHASE SYNCHRONOUS MOTOR DRIVES

    Get PDF
    Multiphase electric machines are attractive in comparison with three-phase ones due to advantages such as fault-tolerant nature, smaller rating per phase and lower torque ripple. More specifically, the machines with multiple three-phase windings are particularly convenient, because they are suitable for standard off-the-shelf three-phase dc/ac converter modules. For instance, they are becoming a serious option for applications such as electric vehicles and wind turbines. On the other hand, in these applications, operation at low power is often required for long time intervals; hence, improving the efficiency under such conditions is highly desired and could save a significant amount of energy in the long term. This dissertation proposes a method to enhance the efficiency of electric drives based on multiple three-phase windings at light load. The number of active legs is selected depending on the required torque at each instant. To ensure that the overall efficiency is effectively optimized, not only the converter losses, but also the stator copper losses, are taken into account. Experimental results verify the theoretical outcomes. Surface-mounted permanent-magnet synchronous motors (SPMSMs) require a position measurement to ensure a high-performance control. To avoid the cost and maintenance associated to position sensors, sensorless methods are often preferred. The approaches based on high-frequency signal injection are currently a well-established solution to obtain an accurate position estimation in SPMSMs. These techniques can be roughly divided into two groups: those based on sinusoidal or on square-wave high-frequency signals. The main drawback of the former is the limitation on the response speed, due to the presence of several low-pass filters (LPFs). On the other hand, the latter methods are sensitive to deadtime effects, and high-frequency closed-loop current control is required to overcome it. This dissertation proposes to improve the sensorless strategies based on sinusoidal high-frequency injection by simplifying the scheme employed to extract the information about the position error. Namely, two LPFs and several multiplications are removed. Such simplification does not only reduce the computational complexity, but also permits to obtain a faster response to the changes in the angle/speed, and hence, a faster closed-loop control. Experimental results based on a SPMSM prove the enhanced functionality of the proposed method with respect to the previous ones based on high-frequency sinusoidal signal injection

    Experimental Investigation of Decoupled Discontinuous PWM Strategies in Open-End Winding Induction Motor Supplied by a Common DC-link

    Get PDF
    © 2023 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/JESTPE.2023.3258799Currently, open-end winding induction motors fed by a dual inverter (OEWIM-DI) present an innovative approach to enhance the performance of modern electric drive systems, such as electrical vehicles and electric aircraft applications. However, the DI topology requires a proper switching control strategy to enable the OEWIM drive to fully achieve its performance. This work aims to investigate experimentally the impact of different decoupled discontinuous pulsewidth modulation (DDPWM) control strategies on the performance of the OEWIM-DI supplied by a common dc-link. The criteria performances adopted in this study are: 1) the total harmonic distortion (THD) of the current and voltage; 2) the zero sequence voltage (ZSV); 3) the common mode voltage (CMV); and 4) the DI losses. The various DDPWM control schemes for the 1.5-kW OEWIM-DI motor drive are implemented on a dSPACE 1104 board, and the results are compared with the popular and widely used space-vector PWM (SVPWM) strategy. From the results, it can be concluded that the optimized DDPWM technique gives the best performance. This technique has reduced the CMV by one level and reduces the losses by 50% while having the same THD and ZSV obtained with the SVPWM technique.Peer reviewe

    Power quality improvement utilizing photovoltaic generation connected to a weak grid

    Get PDF
    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turns the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtaine

    POWER QUALITY CONTROL AND COMMON-MODE NOISE MITIGATION FOR INVERTERS IN ELECTRIC VEHICLES

    Get PDF
    Inverters are widely utilized in electric vehicle (EV) applications as a major voltage/current source for onboard battery chargers (OBC) and motor drive systems. The inverter performance is critical to the efficiency of EV system energy conversion and electronics system electro-magnetic interference (EMI) design. However, for AC systems, the bandwidth requirement is usually low compared with DC systems, and the control impact on the inverter differential-mode (DM) and common-mode (CM) performance are not well investigated. With the wide-band gap (WBG) device era, the switching capability of power electronics devices drastically improved. The DM/CM impact that was brought by the WBG device-based inverter becomes more serious and has not been completely understood. This thesis provides an in-depth analysis of on-board inverter control strategies and the corresponding DM/CM impact on the EV system. The OBC inverter control under vehicle-to-load (V2L) mode will be documented first. A virtual resistance damping method minimizes the nonlinear load harmonics, and a neutral balancing method regulates the unbalanced load impact through the fourth leg. In the motor drive system, a generalized CM voltage analytical model and a current ripple prediction model are built for understanding the system CM and DM stress with respect to different modulation methods, covering both 2-level and 3-level topologies. A novel CM EMI damping modulation scheme is proposed for 6-phase inverter applications. The performance comparison between the proposed methods and the conventional solution is carried out. Each topic is supported by the corresponding hardware platform and experimental validation

    Homopolar Current’s Copper Losses Analysis for Different Modulations in Open-End Winding Five-Phase drives

    Get PDF
    This work has been achieved within the framework of CE2I project. CE2I is co-financed by European Union with the financial support of European Regional Development Fund (ERDF), French State and the French Region of Hauts-de-France.This paper analyses the copper losses due to the homopolar current of a five-phase open-end winding machine supplied by a 10-leg inverter and a single DC voltage source. This topology can have non-null high frequency homopolar current components that can increase the machine’s copper losses and result in overheating of the motor phase windings. Accordingly, different modulation strategies are compared with the goal of reducing the homopolar current and, consequently the resulting copper losses. The comparison study is achieved using Matlab/Simulink and a finite element model in order to evaluate these losses.European Regional Development Fund (ERDF

    A 3D Reduced Common Mode Voltage PWM Algorithm for a Five-Phase Six-Leg Inverter

    Get PDF
    Neutral point voltage control converters (NPVCC) are being considered for AC drive applications, where their additional degree of freedom can be used for different purposes, such as fault tolerance or common mode voltage (CMV) reduction. For every PWM-driven converter, the CMV is an issue that must be considered since it can lead to shaft voltages between rotor and stator windings, generating bearing currents that accelerate bearing degradation, and can also produce a high level of electromagnetic interference (EMI). In light of these considerations, in this paper a three-dimensional reduced common mode voltage PWM (3D RCMV-PWM) technique is proposed which effectively reduces CMV in five-phase six-leg NPVCCs. The mathematical description of both the converter and the modulation technique, in space-vector and carrier-based approaches, is included. Furthermore, the simulation and experimental analysis validate the CMV reduction capability in addition to the good behaviour in terms of the efficiency and harmonic distortion of the proposed RCMV-PWM algorithm.This work has been supported in part by the Government of Basque Country within the fund for research groups of the Basque University system IT1440-22 and MCIN/AEI/10.13039/ 501100011033 within the project PID2020-115126RB-I00
    • 

    corecore