46,246 research outputs found

    Determinant representation of the domain-wall boundary condition partition function of a Richardson-Gaudin model containing one arbitrary spin

    Get PDF
    In this work we present a determinant expression for the domain-wall boundary condition partition function of rational (XXX) Richardson-Gaudin models which, in addition to N−1N-1 spins 12\frac{1}{2}, contains one arbitrarily large spin SS. The proposed determinant representation is written in terms of a set of variables which, from previous work, are known to define eigenstates of the quantum integrable models belonging to this class as solutions to quadratic Bethe equations. Such a determinant can be useful numerically since systems of quadratic equations are much simpler to solve than the usual highly non-linear Bethe equations. It can therefore offer significant gains in stability and computation speed.Comment: 17 pages, 0 figure

    A Dichotomy Theorem for Homomorphism Polynomials

    Full text link
    In the present paper we show a dichotomy theorem for the complexity of polynomial evaluation. We associate to each graph H a polynomial that encodes all graphs of a fixed size homomorphic to H. We show that this family is computable by arithmetic circuits in constant depth if H has a loop or no edge and that it is hard otherwise (i.e., complete for VNP, the arithmetic class related to #P). We also demonstrate the hardness over the rational field of cut eliminator, a polynomial defined by B\"urgisser which is known to be neither VP nor VNP-complete in the field of two elements, if VP is not equal to VNP (VP is the class of polynomials computable by arithmetic circuit of polynomial size)

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    Monotone Projection Lower Bounds from Extended Formulation Lower Bounds

    Get PDF
    In this short note, we reduce lower bounds on monotone projections of polynomials to lower bounds on extended formulations of polytopes. Applying our reduction to the seminal extended formulation lower bounds of Fiorini, Massar, Pokutta, Tiwari, & de Wolf (STOC 2012; J. ACM, 2015) and Rothvoss (STOC 2014; J. ACM, 2017), we obtain the following interesting consequences. 1. The Hamiltonian Cycle polynomial is not a monotone subexponential-size projection of the permanent; this both rules out a natural attempt at a monotone lower bound on the Boolean permanent, and shows that the permanent is not complete for non-negative polynomials in VNPR_{{\mathbb R}} under monotone p-projections. 2. The cut polynomials and the perfect matching polynomial (or "unsigned Pfaffian") are not monotone p-projections of the permanent. The latter, over the Boolean and-or semi-ring, rules out monotone reductions in one of the natural approaches to reducing perfect matchings in general graphs to perfect matchings in bipartite graphs. As the permanent is universal for monotone formulas, these results also imply exponential lower bounds on the monotone formula size and monotone circuit size of these polynomials.Comment: Published in Theory of Computing, Volume 13 (2017), Article 18; Received: November 10, 2015, Revised: July 27, 2016, Published: December 22, 201

    Adiabatic Quantum State Generation and Statistical Zero Knowledge

    Get PDF
    The design of new quantum algorithms has proven to be an extremely difficult task. This paper considers a different approach to the problem, by studying the problem of 'quantum state generation'. This approach provides intriguing links between many different areas: quantum computation, adiabatic evolution, analysis of spectral gaps and groundstates of Hamiltonians, rapidly mixing Markov chains, the complexity class statistical zero knowledge, quantum random walks, and more. We first show that many natural candidates for quantum algorithms can be cast as a state generation problem. We define a paradigm for state generation, called 'adiabatic state generation' and develop tools for adiabatic state generation which include methods for implementing very general Hamiltonians and ways to guarantee non negligible spectral gaps. We use our tools to prove that adiabatic state generation is equivalent to state generation in the standard quantum computing model, and finally we show how to apply our techniques to generate interesting superpositions related to Markov chains.Comment: 35 pages, two figure

    Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    Full text link
    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ\Pi\Sigma\Pi polynomial. We first prove that the first problem is \#P-hard and then devise a O∗(3ns(n))O^*(3^ns(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n)s(n). Later, this upper bound is improved to O∗(2n)O^*(2^n) for ΠΣΠ\Pi\Sigma\Pi polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ\Pi\Sigma polynomials. On the negative side, we prove that, even for ΠΣΠ\Pi\Sigma\Pi polynomials with terms of degree ≤2\le 2, the first problem cannot be approximated at all for any approximation factor ≥1\ge 1, nor {\em "weakly approximated"} in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ\lambda-approximation algorithm for ΠΣΠ\Pi\Sigma\Pi polynomials with terms of degrees no more a constant λ≥2\lambda \ge 2. On the inapproximability side, we give a n(1−ϵ)/2n^{(1-\epsilon)/2} lower bound, for any ϵ>0,\epsilon >0, on the approximation factor for ΠΣΠ\Pi\Sigma\Pi polynomials. When terms in these polynomials are constrained to degrees ≤2\le 2, we prove a 1.04761.0476 lower bound, assuming P≠NPP\not=NP; and a higher 1.06041.0604 lower bound, assuming the Unique Games Conjecture
    • …
    corecore