1,931,602 research outputs found

    On Constant-Round Concurrent Zero-Knowledge from a Knowledge Assumption

    Get PDF
    In this work, we consider the long-standing open question of constructing constant-round concurrent zero-knowledge protocols in the plain model. Resolving this question is known to require non-black-box techniques. We consider non-black-box techniques for zero-knowledge based on knowledge assumptions, a line of thinking initiated by the work of Hada and Tanaka (CRYPTO 1998). Prior to our work, it was not known whether knowledge assumptions could be used for achieving security in the concurrent setting, due to a number of significant limitations that we discuss here. Nevertheless, we obtain the following results: 1. We obtain the first constant round concurrent zero-knowledge argument for \textbf{NP} in the plain model based on a new variant of knowledge of exponent assumption. Furthermore, our construction avoids the inefficiency inherent in previous non-black-box techniques such that those of Barak (FOCS 2001); we obtain our result through an efficient protocol compiler. 2. Unlike Hada and Tanaka, we do not require a knowledge assumption to argue the soundness of our protocol. Instead, we use a discrete log like assumption, which we call Diffie-Hellman Logarithm Assumption, to prove the soundness of our protocol. 3. We give evidence that our new variant of knowledge of exponent assumption is in fact plausible. In particular, we show that our assumption holds in the generic group model. 4. Knowledge assumptions are especially delicate assumptions whose plausibility may be hard to gauge. We give a novel framework to express knowledge assumptions in a more flexible way, which may allow for formulation of plausible assumptions and exploration of their impact and application in cryptography.Comment: 30 pages, 3 figure

    Zero-Shot Hashing via Transferring Supervised Knowledge

    Full text link
    Hashing has shown its efficiency and effectiveness in facilitating large-scale multimedia applications. Supervised knowledge e.g. semantic labels or pair-wise relationship) associated to data is capable of significantly improving the quality of hash codes and hash functions. However, confronted with the rapid growth of newly-emerging concepts and multimedia data on the Web, existing supervised hashing approaches may easily suffer from the scarcity and validity of supervised information due to the expensive cost of manual labelling. In this paper, we propose a novel hashing scheme, termed \emph{zero-shot hashing} (ZSH), which compresses images of "unseen" categories to binary codes with hash functions learned from limited training data of "seen" categories. Specifically, we project independent data labels i.e. 0/1-form label vectors) into semantic embedding space, where semantic relationships among all the labels can be precisely characterized and thus seen supervised knowledge can be transferred to unseen classes. Moreover, in order to cope with the semantic shift problem, we rotate the embedded space to more suitably align the embedded semantics with the low-level visual feature space, thereby alleviating the influence of semantic gap. In the meantime, to exert positive effects on learning high-quality hash functions, we further propose to preserve local structural property and discrete nature in binary codes. Besides, we develop an efficient alternating algorithm to solve the ZSH model. Extensive experiments conducted on various real-life datasets show the superior zero-shot image retrieval performance of ZSH as compared to several state-of-the-art hashing methods.Comment: 11 page

    Increasing the power of the verifier in Quantum Zero Knowledge

    Get PDF
    In quantum zero knowledge, the assumption was made that the verifier is only using unitary operations. Under this assumption, many nice properties have been shown about quantum zero knowledge, including the fact that Honest-Verifier Quantum Statistical Zero Knowledge (HVQSZK) is equal to Cheating-Verifier Quantum Statistical Zero Knowledge (QSZK) (see [Wat02,Wat06]). In this paper, we study what happens when we allow an honest verifier to flip some coins in addition to using unitary operations. Flipping a coin is a non-unitary operation but doesn't seem at first to enhance the cheating possibilities of the verifier since a classical honest verifier can flip coins. In this setting, we show an unexpected result: any classical Interactive Proof has an Honest-Verifier Quantum Statistical Zero Knowledge proof with coins. Note that in the classical case, honest verifier SZK is no more powerful than SZK and hence it is not believed to contain even NP. On the other hand, in the case of cheating verifiers, we show that Quantum Statistical Zero Knowledge where the verifier applies any non-unitary operation is equal to Quantum Zero-Knowledge where the verifier uses only unitaries. One can think of our results in two complementary ways. If we would like to use the honest verifier model as a means to study the general model by taking advantage of their equivalence, then it is imperative to use the unitary definition without coins, since with the general one this equivalence is most probably not true. On the other hand, if we would like to use quantum zero knowledge protocols in a cryptographic scenario where the honest-but-curious model is sufficient, then adding the unitary constraint severely decreases the power of quantum zero knowledge protocols.Comment: 17 pages, 0 figures, to appear in FSTTCS'0
    • …
    corecore