12,133 research outputs found

    Group twin coloring of graphs

    Full text link
    For a given graph GG, the least integer k≥2k\geq 2 such that for every Abelian group G\mathcal{G} of order kk there exists a proper edge labeling f:E(G)→Gf:E(G)\rightarrow \mathcal{G} so that ∑x∈N(u)f(xu)≠∑x∈N(v)f(xv)\sum_{x\in N(u)}f(xu)\neq \sum_{x\in N(v)}f(xv) for each edge uv∈E(G)uv\in E(G) is called the \textit{group twin chromatic index} of GG and denoted by χg′(G)\chi'_g(G). This graph invariant is related to a few well-known problems in the field of neighbor distinguishing graph colorings. We conjecture that χg′(G)≤Δ(G)+3\chi'_g(G)\leq \Delta(G)+3 for all graphs without isolated edges, where Δ(G)\Delta(G) is the maximum degree of GG, and provide an infinite family of connected graph (trees) for which the equality holds. We prove that this conjecture is valid for all trees, and then apply this result as the base case for proving a general upper bound for all graphs GG without isolated edges: χg′(G)≤2(Δ(G)+col(G))−5\chi'_g(G)\leq 2(\Delta(G)+{\rm col}(G))-5, where col(G){\rm col}(G) denotes the coloring number of GG. This improves the best known upper bound known previously only for the case of cyclic groups Zk\mathbb{Z}_k

    Fourier-Reflexive Partitions and MacWilliams Identities for Additive Codes

    Full text link
    A partition of a finite abelian group gives rise to a dual partition on the character group via the Fourier transform. Properties of the dual partitions are investigated and a convenient test is given for the case that the bidual partition coincides the primal partition. Such partitions permit MacWilliams identities for the partition enumerators of additive codes. It is shown that dualization commutes with taking products and symmetrized products of partitions on cartesian powers of the given group. After translating the results to Frobenius rings, which are identified with their character module, the approach is applied to partitions that arise from poset structures

    Mod-two cohomology of symmetric groups as a Hopf ring

    Full text link
    We compute the mod-2 cohomology of the collection of all symmetric groups as a Hopf ring, where the second product is the transfer product of Strickland and Turner. We first give examples of related Hopf rings from invariant theory and representation theory. In addition to a Hopf ring presentation, we give geometric cocycle representatives and explicitly determine the structure as an algebra over the Steenrod algebra. All calculations are explicit, with an additive basis which has a clean graphical representation. We also briefly develop related Hopf ring structures on rings of symmetric invariants and end with a generating set consisting of Stiefel-Whitney classes of regular representations v2. Added new results on varieties which represent the cocycles, a graphical representation of the additive basis, and on the Steenrod algebra action. v3. Included a full treatment of invariant theoretic Hopf rings, refined the definition of representing varieties, and corrected and clarified references.Comment: 31 pages, 6 figure
    • …
    corecore