144 research outputs found

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=vV(G)deg(v)ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure

    On the distance spectrum and distance-based topological indices of central vertex-edge join of three graphs

    Full text link
    Topological indices are molecular descriptors that describe the properties of chemical compounds. These topological indices correlate specific physico-chemical properties like boiling point, enthalpy of vaporization, strain energy, and stability of chemical compounds. This article introduces a new graph operation based on central graph called central vertex-edge join and provides its results related to graph invariants like eccentric-connectivity index, connective eccentricity index, total-eccentricity index, average eccentricity index, Zagreb eccentricity indices, eccentric geometric-arithmetic index, eccentric atom-bond connectivity index, and Wiener index. Also, we discuss the distance spectrum of the central vertex-edge join of three regular graphs. Furthermore, we obtain new families of DD-equienergetic graphs, which are non DD-cospectral

    Graph entropy and related topics

    Get PDF

    Corrigendum on Wiener index, Zagreb Indices and Harary index of Eulerian graphs

    Full text link
    In the original article ``Wiener index of Eulerian graphs'' [Discrete Applied Mathematics Volume 162, 10 January 2014, Pages 247-250], the authors state that the Wiener index (total distance) of an Eulerian graph is maximized by the cycle. We explain that the initial proof contains a flaw and note that it is a corollary of a result by Plesn\'ik, since an Eulerian graph is 22-edge-connected. The same incorrect proof is used in two referencing papers, ``Zagreb Indices and Multiplicative Zagreb Indices of Eulerian Graphs'' [Bull. Malays. Math. Sci. Soc. (2019) 42:67-78] and ``Harary index of Eulerian graphs'' [J. Math. Chem., 59(5):1378-1394, 2021]. We give proofs of the main results of those papers and the 22-edge-connected analogues.Comment: 5 Pages, 1 Figure Corrigendum of 3 papers, whose titles are combine

    Some Topological Indices of Subgroup Graph of Symmetric Group

    Get PDF
    The concept of the topological index of a graph is increasingly diverse because researchers continue to introduce new concepts of topological indices. Researches on the topological indices of a graph which initially only examines graphs related to chemical structures begin to examine graphs in general. On the other hand, the concept of graphs obtained from an algebraic structure is also increasingly being introduced. Thus, studying the topological indices of a graph obtained from an algebraic structure such as a group is very interesting to do. One concept of graph obtained from a group is subgroup graph introduced by Anderson et al in 2012 and there is no research on the topology index of the subgroup graph of the symmetric group until now. This article examines several topological indices of the subgroup graphs of the symmetric group for trivial normal subgroups. This article focuses on determining the formulae of various Zagreb indices such as first and second Zagreb indices and co-indices, reduced second Zagreb index and first and second multiplicatively Zagreb indices and several eccentricity-based topological indices such as first and second Zagreb eccentricity indices, eccentric connectivity, connective eccentricity, eccentric distance sum and adjacent eccentric distance sum indices of these graphs

    Spectral properties of geometric-arithmetic index

    Get PDF
    The concept of geometric-arithmetic index was introduced in the chemical graph theory recently, but it has shown to be useful. One of the main aims of algebraic graph theory is to determine how, or whether, properties of graphs are reflected in the algebraic properties of some matrices. The aim of this paper is to study the geometric-arithmetic index GA(1) from an algebraic viewpoint. Since this index is related to the degree of the vertices of the graph, our main tool will be an appropriate matrix that is a modification of the classical adjacency matrix involving the degrees of the vertices. Moreover, using this matrix, we define a GA Laplacian matrix which determines the geometric-arithmetic index of a graph and satisfies properties similar to the ones of the classical Laplacian matrix. (C) 2015 Elsevier Inc. All rights reserved.This research was supported in part by a Grant from Ministerio de Economía y Competitividad (MTM 2013-46374-P), Spain, and a Grant from CONACYT (FOMIX-CONACyT-UAGro 249818), México

    Leap Eccentric Connectivity Index of Subdivision Graphs

    Get PDF
    The second degree of a vertex in a simple graph is defined as the number of its second neighbors. The leap eccentric connectivity index of a graph M, L xi(c)(M), is the sum of the product of the second degree and the eccentricity of every vertex in M. In this paper, some lower and upper bounds of L xi(c)(S(M)) in terms of the numbers of vertices and edges, diameter, and the first Zagreb and third leap Zagreb indices are obtained. Also, the exact values of L xi(c)(S(M)) for some well-known graphs are computed

    Bond Additive Modeling 1. Adriatic Indices

    Get PDF
    Some of the most famous molecular descriptors are bond additive, i.e. they are calculated as the sum of edge contributions (Randić-type indices, Balaban-type indices, Wiener index and its modifications, Szeged index...). In this paper, the methods of calculations of bond contributions of these descriptors are analyzed. The general concepts are extracted, and based on these concepts a large class of molecular descriptors is defined. These descriptors are named Adriatic indices. An especially interesting subclass of these descriptors consists of 148 discrete Adriatic indices. They are analyzed on the testing sets provided by the International Academy of Mathematical Chemistry, and it has been shown that they have good predictive properties in many cases. They can be easily encoded in the computer and it may be of interest to incorporate them in the existing software packages for chemical modeling. It is possible that they could improve various QSAR and QSPR studies
    corecore