1,908 research outputs found

    Higher Point Spin Field Correlators in D=4 Superstring Theory

    Full text link
    Calculational tools are provided allowing to determine general tree-level scattering amplitudes for processes involving bosons and fermions in heterotic and superstring theories in four space-time dimensions. We compute higher-point superstring correlators involving massless four-dimensional fermionic and spin fields. In D=4 these correlators boil down to a product of two pure spin field correlators of left- and right-handed spin fields. This observation greatly simplifies the computation of such correlators. The latter are basic ingredients to compute multi-fermion superstring amplitudes in D=4. Their underlying fermionic structure and the fermionic couplings in the effective action are determined by these correlators.Comment: 61 pages, LaTeX; v2: enlarged introduction; final version to appear in NP B; v3: little typos remove

    Computation of the p6 order chiral Lagrangian coefficients from the underlying theory of QCD

    Full text link
    We present results of computing the p6 order low energy constants in the normal part of chiral Lagrangian both for two and three flavor pseudo-scalar mesons. This is a generalization of our previous work on calculating the p4 order coefficients of the chiral Lagrangian in terms of the quark self energy Sigma(p2) approximately from QCD. We show that most of our results are consistent with those we can find in the literature.Comment: 51 pages,2 figure

    The completion of optimal (3,4)(3,4)-packings

    Full text link
    A 3-(n,4,1)(n,4,1) packing design consists of an nn-element set XX and a collection of 44-element subsets of XX, called {\it blocks}, such that every 33-element subset of XX is contained in at most one block. The packing number of quadruples d(3,4,n)d(3,4,n) denotes the number of blocks in a maximum 33-(n,4,1)(n,4,1) packing design, which is also the maximum number A(n,4,4)A(n,4,4) of codewords in a code of length nn, constant weight 44, and minimum Hamming distance 4. In this paper the undecided 21 packing numbers A(n,4,4)A(n,4,4) are shown to be equal to Johnson bound J(n,4,4)J(n,4,4) (=⌊n4⌊n−13⌊n−22⌋⌋⌋)( =\lfloor\frac{n}{4}\lfloor\frac{n-1}{3}\lfloor\frac{n-2}{2}\rfloor\rfloor\rfloor) where n=6k+5n=6k+5, k∈{m: mk\in \{m:\ m is odd, 3≤m≤35, m≠17,21}∪{45,47,75,77,79,159}3\leq m\leq 35,\ m\neq 17,21\}\cup \{45,47,75,77,79,159\}

    Space shuttle: Longitudinal and lateral directional stability characteristics of the MDAC high cross range delta wing orbiter

    Get PDF
    Low speed wind tunnel tests on longitudinal and lateral stability of high cross range delta wing space shuttle

    Study: Suicide Prevention Program Increases Knowledge, Changes Attitudes

    Get PDF

    Inertia Groups and Smooth Structures on Quaternionic Projective Spaces

    Full text link
    For a quarternionic projective space, the homotopy inertia group and the concordance inertia group are isomorphic, but the inertia group might be different. We show that the concordance inertia group is trivial in dimension 20, but there are many examples in high dimensions where the concordance inertia group is non-trivial. We extend these to computations of concordance classes of smooth structures. These have applications to 33-sphere actions on homotopy spheres and tangential homotopy structures.Comment: 13 page
    • …
    corecore