1,128 research outputs found

    공정변이를 고려한 3차원 집적 회로 설계 및 패키징 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 김태환.As CMOS scaling down, The control of variation in chip performance (i.e. speed and power) becomes highly important to improve the chip yield. The increased variation of chip performance demands additional design efforts such as the increase of guard-band or longer design turnaround time (TAT), which cause degradation of both chip performance and economic profit. Meanwhile, through-silicon via (TSV) based 3D technology has been regarded as the promising solution for long interconnect wire and huge die size problem. Since a 3D IC is manufactured by stacking multiple dies which are fabricated in different wafers, integration of the dies that have far different process characteristic can enlarge the difference of device performance on different dies within a single chip. In this dissertation, we analyze the effect of on-package (within-chip) variation on 3D IC and presents effective methods to mitigate the onpackage variation. First, a parametric yield improvement method is presented to resolve the mismatches of dies having different process characteristic. Comprehensive 3D integration algorithms considering post-silicon tuning technique is developed for the multi-layered 3D IC. Then, we show that a careful clock edge embedding in 3D clock tree can greatly reduce the impact of on-package variation on 3D clock skew and propose a two-step solution for the problem of on-package variation-aware layer embedding in 3D clock tree synthesis. In summary, this dissertation presents effective 3D integration method and 3D clock tree synthesis algorithm for process-variation tolerant 3D IC designs.Abstract i Contents ii List of Figures iv List of Tables vii 1 Introduction 1 1.1 Process Variation in 3D ICs . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . 6 2 Post-silicon Tuning Aware Die/WaferMatching Algorithms for Enhancing Parametric Yield of 3D IC Design 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 The Die-to-Die Matching Problem and Proposed Algorithm Considering Body Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Motivation and Problem Definition . . . . . . . . . . . . . . 13 2.3.2 The Proposed Die-to-Die Matching Algorithm . . . . . . . . 15 2.4 TheWafer-to-Wafer Matching Problem and Proposed Algorithm Considering Body Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1 Problem Definition and The Proposed Wafer-to-Wafer Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Edge Layer Embedding Algorithm for Mitigating On-Package Variation in 3D Clock Tree Synthesis 32 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Problem Definitions and Motivation . . . . . . . . . . . . . . . . . . 35 3.3 The Proposed Algorithm for On-Package Variation Aware Edge Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 Algorithm for Maximizing Layer Sharing of Edges . . . . . . 39 3.3.2 Refinement: Partial Edge Embedding on Layers . . . . . . . . 47 3.3.3 Clock Tree Routing and Buffer Insertion . . . . . . . . . . . . 49 3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Conclusion 64 4.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Abstract in Korean 72Docto

    On maximizing the compound yield for 3D Wafer-to-Wafer stacked ICs

    Full text link
    Three-Dimensional Stacked IC (3D-SIC) is an emerging technology that provides heterogeneous integration, higher performance, and lower power consumption compared to planar ICs. Fabricating these 3D-SICs using Wafer-to-Wafer (W2W) stacking has several advantages including: high throughput, thin wafer and small die handling, and high TSV density. However, W2W stacking suffers from low compound yield. This paper investigates various matching processes by using different wafer matching criteria in order to maximize the compound yield. It first establishes a framework covering different matching processes and wafer matching criteria for both replenished and non-replenished wafer repositories. Thereafter, a subset of the framework is analyzed. The simulation results show that the compound yield not only depends on the number of stacked dies, die yield, and repository size, but it also strongly depends on the used matching process and the wafer matching criteria. Moreover, by choosing an appro-priate wafer matching scenario (e.g., wafer matching pro-cess, criterion etc.), the compound yield can be improved up to 13.4 % relative to random W2W stacking

    Investigation into yield and reliability enhancement of TSV-based three-dimensional integration circuits

    No full text
    Three dimensional integrated circuits (3D ICs) have been acknowledged as a promising technology to overcome the interconnect delay bottleneck brought by continuous CMOS scaling. Recent research shows that through-silicon-vias (TSVs), which act as vertical links between layers, pose yield and reliability challenges for 3D design. This thesis presents three original contributions.The first contribution presents a grouping-based technique to improve the yield of 3D ICs under manufacturing TSV defects, where regular and redundant TSVs are partitioned into groups. In each group, signals can select good TSVs using rerouting multiplexers avoiding defective TSVs. Grouping ratio (regular to redundant TSVs in one group) has an impact on yield and hardware overhead. Mathematical probabilistic models are presented for yield analysis under the influence of independent and clustering defect distributions. Simulation results using MATLAB show that for a given number of TSVs and TSV failure rate, careful selection of grouping ratio results in achieving 100% yield at minimal hardware cost (number of multiplexers and redundant TSVs) in comparison to a design that does not exploit TSV grouping ratios. The second contribution presents an efficient online fault tolerance technique based on redundant TSVs, to detect TSV manufacturing defects and address thermal-induced reliability issue. The proposed technique accounts for both fault detection and recovery in the presence of three TSV defects: voids, delamination between TSV and landing pad, and TSV short-to-substrate. Simulations using HSPICE and ModelSim are carried out to validate fault detection and recovery. Results show that regular and redundant TSVs can be divided into groups to minimise area overhead without affecting the fault tolerance capability of the technique. Synthesis results using 130-nm design library show that 100% repair capability can be achieved with low area overhead (4% for the best case). The last contribution proposes a technique with joint consideration of temperature mitigation and fault tolerance without introducing additional redundant TSVs. This is achieved by reusing spare TSVs that are frequently deployed for improving yield and reliability in 3D ICs. The proposed technique consists of two steps: TSV determination step, which is for achieving optimal partition between regular and spare TSVs into groups; The second step is TSV placement, where temperature mitigation is targeted while optimizing total wirelength and routing difference. Simulation results show that using the proposed technique, 100% repair capability is achieved across all (five) benchmarks with an average temperature reduction of 75.2? (34.1%) (best case is 99.8? (58.5%)), while increasing wirelength by a small amount

    Through-Silicon Vias in SiGe BiCMOS and Interposer Technologies for Sub-THz Applications

    Get PDF
    Im Rahmen der vorliegenden Dissertation zum Thema „Through-Silicon Vias in SiGe BiCMOS and Interposer Technologies for Sub-THz Applications“ wurde auf Basis einer 130 nm SiGe BiCMOS Technologie ein Through-Silicon Via (TSV) Technologiemodul zur Herstellung elektrischer Durchkontaktierungen für die Anwendung im Millimeterwellen und Sub-THz Frequenzbereich entwickelt. TSVs wurden mittels elektromagnetischer Simulationen modelliert und in Bezug auf ihre elektrischen Eigenschaften bis in den sub-THz Bereich bis zu 300 GHz optimiert. Es wurden die Wechselwirkungen zwischen Modellierung, Fertigungstechnologie und den elektrischen Eigenschaften untersucht. Besonderes Augenmerk wurde auf die technologischen Einflussfaktoren gelegt. Daraus schlussfolgernd wurde das TSV Technologiemodul entwickelt und in eine SiGe BiCMOS Technologie integriert. Hierzu wurde eine Via-Middle Integration gewählt, welche eine Freilegung der TSVs von der Wafer Rückseite erfordert. Durch die geringe Waferdicke von ca. 75 μm wird einen Carrier Wafer Handling Prozess verwendet. Dieser Prozess wurde unter der Randbedingung entwickelt, dass eine nachfolgende Bearbeitung der Wafer innerhalb der BiCMOS Pilotlinie erfolgen kann. Die Rückseitenbearbeitung zielt darauf ab, einen Redistribution Layer auf der Rückseite der BiCMOS Wafer zu realisieren. Hierzu wurde ein Prozess entwickelt, um gleichzeitig verschiedene TSV Strukturen mit variablen Geometrien zu realisieren und damit eine hohe TSV Design Flexibilität zu gewährleisten. Die TSV Strukturen wurden von DC bis über 300 GHz charakterisiert und die elektrischen Eigenschaften extrahiert. Dabei wurde gezeigt, dass TSV Verbindungen mit sehr geringer Dämpfung <1 dB bis 300 GHz realisierbar sind und somit ausgezeichnete Hochfrequenzeigenschaften aufweisen. Zuletzt wurden vielfältige Anwendungen wie das Grounding von Hochfrequenzschaltkreisen, Interposer mit Waveguides und 300 GHz Antennen dargestellt. Das Potential für Millimeterwellen Packaging und 3D Integration wurde evaluiert. TSV Technologien sind heutzutage in vielen Anwendungen z.B. im Bereich der Systemintegration von Digitalschaltkreisen und der Spannungsversorgung von integrierten Schaltkreisen etabliert. Im Rahmen dieser Arbeit wurde der Einsatz von TSVs für Millimeterwellen und dem sub-THz Frequenzbereich untersucht und die Anwendung für den sub-THz Bereich bis 300 GHz demonstriert. Dadurch werden neue Möglichkeiten der Systemintegration und des Packaging von Höchstfrequenzsystemen geschaffen.:Bibliographische Beschreibung List of symbols and abbreviations Acknowledgement 1. Introduction 2. FEM Modeling of BiCMOS & Interposer Through-Silicon Vias 3. Fabrication of BiCMOS & Silicon Interposer with TSVs 4. Characterization of BiCMOS Embedded Through-Silicon Vias 5. Applications 6. Conclusion and Future Work 7. Appendix 8. Publications & Patents 9. Bibliography 10. List of Figures and Table

    High-Density Solid-State Memory Devices and Technologies

    Get PDF
    This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms

    Study of the impact of lithography techniques and the current fabrication processes on the design rules of tridimensional fabrication technologies

    Get PDF
    Working for the photolithography tool manufacturer leader sometimes gives me the impression of how complex and specific is the sector I am working on. This master thesis topic came with the goal of getting the overall picture of the state-of-the-art: stepping out and trying to get a helicopter view usually helps to understand where a process is in the productive chain, or what other firms and markets are doing to continue improvingUniversidad de sevilla.Máster Universitario en Microelectrónica: Diseño y Aplicaciones de Sistemas Micro/Nanométrico

    Novel wafer-scale adhesive bonding with improved alignment accuracy and bond uniformity

    Get PDF
    We report a versatile method for improving post-bonding wafer alignment accuracy and BCB thickness uniformity in stacks bonded with soft-baked BCB. It is based on novel BCB-based micro-pillars that act as anchors during bonding. The anchor structures become a natural part of the bonding interface therefore causing minimal interference to the optical, electrical and mechanical properties of the bonded stack. We studied these properties for fixed anchor density and various anchor heights with respect to the adhesive BCB thickness. We demonstrated that the alignment accuracy can be improved by approximately an order of magnitude and approach the fundamental pre-bond alignment accuracy by the tool. We also demonstrated that this technique is effective for a large range of BCB thicknesses of 2–16 μm. Furthermore we observed that the thickness non-uniformities were reduced by a factor of 2–3 × for BCB thicknesses in the 8–16 μm range
    corecore